

 Version 1.0.0

 Serial No. 2021102100012012

 Presented by Fairyproof

 October 21, 2021

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the inSure
DeFi project.

Audit Start Time:

October 19, 2021

Audit End Time:

October 20, 2021

Token's Name:

inSure

Token's Symbol:

SURE

Token's Precisions:

18

Audited Code's Github Repository:

https://github.com/inSureToken/SmartContract

Audited Code's Github Commit Number When Audit Started:

474f85ce42afaaf31370476420cbcafbf78382fd

Audited Source File's Address:

https://etherscan.io/address/0xcb86c6a22cb56b6cf40cafedb06ba0df188a416e

Audited Source Files:

The calculated SHA-256 values for the audited files when the audit was done are as follows:

The source files audited include all the files with the extension "sol" as follows:

inSure.sol: 0xc8d1ed2ecb6cdc015b5e922e7ba31e7f1628f07c94be90d006ea71c82ac565df

inSureBSCAnySwap.sol:

0x087f90e15e5b22aa2f11b4f598ed68614f95b5480cf904be1169c220831c0b75

contracts/

├── inSure.sol

└── inSureBSCAnySwap.sol

af://n20
https://github.com/inSureToken/SmartContract
https://etherscan.io/address/0xcb86c6a22cb56b6cf40cafedb06ba0df188a416e

The goal of this audit is to review inSure DeFi’s token issurance function, study potential security
vulnerabilities, its general design and architecture, and uncover bugs that could compromise the
software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the inSure
DeFi team for specified versions. Whenever the code, software, materials, settings, enviroment
etc is changed, the comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current
understanding of known security patterns and state of the art regarding system security. You
agree that your access and/or use, including but not limited to any associated services, products,
protocols, platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and

af://n51
af://n59

comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following

i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure
we understand the size, scope, and functionality of the project's source code.

ii. Manual review of code, which is the process of reading source code line-by-line in an
attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what
the specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:

i. Test coverage analysis, which is the process of determining whether the test cases are
actually covering the code and how much code is exercised when we run the test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each
part of a program to execute.

3. Best practices review, which is a review of the source code to improve maintainability,
security, and control based on the established industry and academic practices,
recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

— Documentation
For this audit, we used the following sources of truth about how the token issurance should work:

https://insuretoken.net/

whitepaper

These were considered the specification.

— Comments from Auditee
No vulnerabilities with critical, high or medium-severity were found in the above source code.

One vulnerability with low-severity was found in the above source code.

02. About Fairyproof

af://n70
af://n73
https://insuretoken.net/
https://insuretoken.net/whitepaper.html
af://n80
af://n87

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

03. Major functions of audited code

The audited code implements a token issurance function.

Name: inSure

Symbol: SURE

Precisions: 18

Max Supply: 88,000,000,000

04. Coverage of issues
The issues that the Fairyproof team covered when conducting the audit include but are not
limited to the following ones:

Re-entrancy Attack
DDos Attack
Integer Overflow
Function Visibility
Logic Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Shadow Variable
Design Vulnerability
Token Issurance
Asset Security
Access Control

05. Severity level reference

https://www.fairyproof.com/
af://n93
af://n103
af://n135

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

06. Major areas that need attention

Based on the provided souce code the Fairyproof team focused on the possible issues and risks
related to the following functions or areas.

- Integer Overflow/Underflow
We checked all the code sections, which had arithmetic operations and might introduce integer
overflow or underflow if no safe libraries were used. All of them used safe libraries.

We found one issue. For more details please refer to "08. Issue descriptions".

- Setting of Transaction Fees
We checked whether or not the transaction fees were set properly.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control
We checked each of the functions that could modify a state, especially those functions that could
only be accessed by "owner".

We didn't find issues or risks in these functions or areas at the time of writing.

af://n149
af://n153
af://n157
af://n161
af://n165

- Token Issurance
We checked whether or not the contract files could mint tokens at will.

We didn't find issues or risks in these functions or areas at the time of writing.

- State Update
We checked some key state variables which should only be set at initialization.

We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security
We checked whether or not all the functions that transfer assets were safely hanlded.

We didn't find issues or risks in these functions or areas at the time of writing.

- Inefficient Code
We checked whether or not there was inefficient code which could impact the code's readability
and maintainability.

We didn't find issues or risks in these functions or areas at the time of writing.

- Contract Migration/Upgrade
We checked whether or not the contract files introduce issues or risks associated with contract
migration/upgrade.

We didn't find issues or risks in these functions or areas at the time of writing

- Miscellaneous
We didn't find issues or risks in other functions or areas at the time of writing.

07. List of issues by severity

A. Critical

af://n165
af://n169
af://n173
af://n177
af://n181
af://n185
af://n190
af://n192

- N/A

B. High

- N/A

C. Medium

- N/A

D. Low

- Integer Overflow

08. Issue descriptions

- Integer Overflow: Low
The following code section doesn't use safe math libraries to do arithmetic operations and may
have integer overflow:

Recommendation:

Consider using safe math libraries to do arithmetic operations.

//line 83

allowance[_from][msg.sender] -= _value;

//line 130

balanceOf[msg.sender] -= _value; // Subtract from the sender

totalSupply -= _value; // Updates totalSupply

//line 147

balanceOf[_from] -= _value; // Subtract from the

targeted balance

allowance[_from][msg.sender] -= _value; // Subtract from the

sender's allowance

totalSupply -= _value;

af://n193
af://n195
af://n196
af://n198
af://n199
af://n201
af://n202
af://n207
af://n209

09. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

- N/A

af://n218
af://n222

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditee

	02. About Fairyproof
	03. Major functions of audited code
	04. Coverage of issues
	05. Severity level reference
	06. Major areas that need attention
	- Integer Overflow/Underflow
	- Setting of Transaction Fees
	- Access Control
	- Token Issurance
	- State Update
	- Asset Security
	- Inefficient Code
	- Contract Migration/Upgrade
	- Miscellaneous

	07. List of issues by severity
	A. Critical
	- N/A

	B. High
	- N/A

	C. Medium
	- N/A

	D. Low
	- Integer Overflow

	08. Issue descriptions
	- Integer Overflow: Low

	09. Recommendations to enhance the overall security
	- N/A

