@ FAIRYPROOF

ZED20 Network Bridged Tokens

AUDIT REPORT

Version 1.0.0
Serial No. 2024061600012024
Presented by Fairyproof

June 16, 2024

www.fairyproof.com

ZED20 Network Bridged Tokens

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the ZED20
Network Bridged Tokens project.

Audit Start Time:

June 15, 2024

Audit End Time:

June 16, 2024

Audited Source File's Address:

https://bscscan.com/token/0x567556A7493FB7a22d2fd158Dd4C766a98705f96

https://bscscan.com/token/0x4be35ec329343d7d9f548d42b0f8c17fffe07db4

https://bscscan.com/token/0xA4156cc61dc7796faA24278a0F9F229B15e298cb

https://bscscan.com/token/0x40f85D6040dF96ea14cD41142bcd244E14CF76f6

https://bscscan.com/token/0x68Db713779f7470c2FD43D3d06841D0192d44939

The goal of this audit is to review Zedx's solidity implementation for its Token Issuance function,
study potential security vulnerabilities, its general design and architecture, and uncover bugs that
could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Zedx team
for specified versions. Whenever the code, software, materials, settings, environment etc is
changed, the comments of this audit will no longer apply.

— Disclaimer

Note that as of the date of publishing, the contents of this report reflect the current understanding
of known security patterns and state of the art regarding system security. You agree that your
access and/or use, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

1
Presented by Fairyproof

af://n2
https://bscscan.com/token/0x567556A7493FB7a22d2fd158Dd4C766a98705f96
https://bscscan.com/token/0x4be35ec329343d7d9f548d42b0f8c17fffe07db4
https://bscscan.com/token/0xA4156cc61dc7796faA24278a0F9F229B15e298cb
https://bscscan.com/token/0x40f85D6040dF96ea14cD41142bcd244E14CF76f6
https://bscscan.com/token/0x68Db713779f7470c2FD43D3d06841D0192d44939
af://n20

ZED20 Network Bridged Tokens

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology

The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:
1. Code Review, Including:
e Project Diagnosis

Understanding the size, scope and functionality of your project's source code based on the
specifications, sources, and instructions provided to Fairyproof.

e Manual Code Review
Reading your source code line-by-line to identify potential vulnerabilities.
e Specification Comparison

Determining whether your project's code successfully and efficiently accomplishes or executes its
functions according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:
e Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or
executed when test cases are run.

e Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to
execute its functions.

3. Best Practices Review

Presented by Fairyproof

af://n28

ZED20 Network Bridged Tokens

Reviewing the source code to improve maintainability, security, and control based on the latest
established industry and academic practices, recommendations, and research.

— Structure of the document

This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

— Documentation

For this audit, we used the following source(s) of truth about how the token issuance function
should work:

Website:https://zedscan.net/

Whitepaper:https://docs.zedscan.net/

Source Code:

https://bscscan.com/token/0x567556A7493FB7a22d2fd158Dd4C766a98705f96

https://bscscan.com/token/0x4be35ec329343d7d9f548d42b0f8c17fffe07db4

https://bscscan.com/token/0xA4156cc61dc7796faA24278a0F9F229B15e298cb

https://bscscan.com/token/0x40f85D6040dF96eal4cD41142bcd244E14CF76f6

https://bscscan.com/token/0x68Db713779f7470c2ED43D3d06841D0192d44939

These were considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the Zedx team or reported an issue.

— Comments from Auditor

Serial Number Auditor Audit Time Result

2024061600012024 Fairyproof Security Team Jun 15, 2024 - Jun 16, 2024

@ 0 Critical © All Resolved
@ 0 High @ All Resolved
0
Total Findings 0 Medium © All Resolve
B 0 Low @ All Resolved
0 Info @ All Resolved
3

Presented by Fairyproof

af://n62
af://n65
https://zedscan.net/
https://docs.zedscan.net/
https://bscscan.com/token/0x567556A7493FB7a22d2fd158Dd4C766a98705f96
https://bscscan.com/token/0x4be35ec329343d7d9f548d42b0f8c17fffe07db4
https://bscscan.com/token/0xA4156cc61dc7796faA24278a0F9F229B15e298cb
https://bscscan.com/token/0x40f85D6040dF96ea14cD41142bcd244E14CF76f6
https://bscscan.com/token/0x68Db713779f7470c2FD43D3d06841D0192d44939
af://n77

ZED20 Network Bridged Tokens

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, no issues were uncovered.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

03. Introduction to Zedx

Zedx is a decentralized blockchain-powered platform and technology stack whose goal is to
enable genuine mass adoption of crypto payments and decentralized finance (DeFi).

The above description is quoted from relevant documents of Zedx.

04. Major functions of audited code

The audited code mainly implements a token issuance function. Here are the details:

USDT.z

e Blockchain: BSC

e Token Standard: ERC-20

e Token Address: Ox4BE35Ec329343d7d9F548d42B0F8c17FFfe07db4
e Token Name: Tether USD Bridged ZED20

e Token Symbol: USDT.z

e Decimals: 18

e Current Supply: 27,500,000,000

e Max Supply: 27,500,000,000

Presented by Fairyproof

af://n96
https://www.fairyproof.com/
af://n101
af://n108
af://n111

ZED20 Network Bridged Tokens
BTC.z

e Blockchain: BSC

e Token Standard: ERC-20

e Token Address: 0xA4156cc61dc7796faA24278a0F9F229B15e298¢ch
e Token Name: Bitcoin Bridged ZED20

e Token Symbol: BTC.z

e Decimals: 18

e Current Supply: 500,000

e Max Supply: 500,000

USDC.z

e Blockchain: BSC

e Token Standard: ERC-20

e Token Address: 0x40f85D6040dF96ea14cD41142bcd244E14CF76f6
e Token Name: USD Coin Bridged ZED20

e Token Symbol: USDC.z

e Decimals: 18

e Current Supply: 27,500,000,000

e Max Supply: 27,500,000,000

ETH.z

e Blockchain: BSC

e Token Standard: ERC-20

e Token Address: 0x68Db713779f7470c2FD43D3d06841D0192d44939
e Token Name: Ethereum Bridged ZED20

e Token Symbol: ETH.z

e Decimals: 18

e Current Supply: 10,000,000

e Max Supply: 10,000,000

Note:

The above four tokens are bridged tokens that are all minted on issuance. The token supplies are
specified by the team.

Presented by Fairyproof

af://n131
af://n150
af://n169

WZEDX

Blockchain: BSC
Token Standard: ERC677

Token Address: 0x567556A7493FB7a22d2fd158Dd4C766a98705f96

Token Name: Wrapped ZEDXION from ZEDX

Token Symbol: WZEDX
Decimals: 18

Current Supply: 14,425,603.7726
Max Supply: No Cap

Mintable: Yes

Owner: 0xa3F37D00C47F4BOFDd5acE310632489A21779a6b

Note:

ZED20 Network Bridged Tokens

WZEDX is a bridged token which is minted by the bridge contract (owner). The max supply is

unlimited and the owner cannot be revoked but can be changed.

The bridge contract is not covered by this audit.

05. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited
to the following ones:

Access Control

Admin Rights

Arithmetic Precision

Code Improvement
Contract Upgrade/Migration
Delete Trap

Design Vulnerability

DoS Attack

EOA Call Trap

Fake Deposit

Function Visibility

Gas Consumption
Implementation Vulnerability

Inappropriate Callback Function

Presented by Fairyproof

af://n191
af://n219

ZED20 Network Bridged Tokens

e Injection Attack

e Integer Overflow/Underflow
e |sContract Trap

e Miner's Advantage

e Misc

e Price Manipulation

e Proxy selector clashing

e Pseudo Random Number
e Re-entrancy Attack

e Replay Attack

e Rollback Attack

e Shadow Variable

e Slot Conflict

e Token Issuance

e Tx.origin Authentication

e Uninitialized Storage Pointer

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

severity issues need to be fixed as soon as possible.
m severity issues will probably bring problems and should be fixed.
Medium severity issues could potentially bring problems and should eventually be fixed.

WA severity issues are minor details and warnings that can remain unfixed but would be
better fixed at some pointin the future.

i g a8 is not an issue or risk but a suggestion for code improvement.

Presented by Fairyproof

af://n286
af://n300

ZED20 Network Bridged Tokens

07. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks
related to the following functions or areas.

- Function Implementation

We checked whether or not the functions were correctly implemented.
We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control

We checked each of the functions that could modify a state, especially those functions that could
only be accessed by owner or administrator
We didn't find issues or risks in these functions or areas at the time of writing.

- Token Issuance & Transfer

We examined token issuance and transfers for situations that could harm the interests of holders.
We didn't find issues or risks in these functions or areas at the time of writing.

- State Update

We checked some key state variables which should only be set at initialization.
We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security

We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous

We checked the code for optimization and robustness.
We didn't find issues or risks in these functions or areas at the time of writing.

Presented by Fairyproof

af://n300
af://n304
af://n307
af://n310
af://n313
af://n316
af://n319
af://n323

ZED20 Network Bridged Tokens

08. issues by severity

- N/A

09. Issue descriptions

- N/A

10. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

- N/A

11. Appendices

11.1 Unit Test

Presented by Fairyproof

af://n323
af://n325
af://n328
af://n330
af://n333
af://n337
af://n340
af://n342

ZED20 Network Bridged Tokens
1. MockReceiver.sol

pragma solidity 0.7.5;

contract MockReceiver {
event TokenReceived(address indexed from, uint value, bytes data);
address public source;
function onTokenTransfer(address from ,uint256 value ,bytes calldata data)
external {
source = from;
emit TokenReceived(from,value,data);

2. TeamToken.t.js

const {
loadFixture,
} = require("@nomicfoundation/hardhat-toolbox/network-helpers");
const { expect } = require('"chai");
const { ethers } = require("hardhat");

describe("Team Token uUnit Test", function () {
const config = {
Mintable:false,
Burnable:false,
Pausable:false,
ownable:false,
maxApprovalskip:false,
3
const meta = {
contractName: "TeamToken",
tokenName: "Tether USD Bridged zED20",
tokenSymbol:"usDT.z",
tokenDecimals: 18,
initSupply: ethers.parseether("27500000000")

async function deployTokenFixture() {

const [owner, alice,bob,...users] = await ethers.getSigners();

const {contractName,tokenName, tokenSymbol,tokenDecimals,initSupply} =
meta;

const StandardToken = await ethers.getContractFactory(contractName);

const instance = await
StandardToken.deploy(tokenName, tokenSymbol, tokenDecimals,initSupply,owner.address
,alice.address);

check_config(instance);
return {owner,alice,bob,users,instance};

10
Presented by Fairyproof

af://n344
af://n348

ZED20 Network Bridged Tokens

function check_config(instance) {
Tlet functions = instance.interface.fragments
.filter(item => item.type === "function")
.map(item => item.name);

let mint_flag = functions.includes("mint");
if(config.Mintable !== mint_flag) {
throw("Invalid Mintable config");

let burn_flag = functions.includes("burn") &&
functions.includes("burnFrom");
if(config.Burnable !== burn_flag) {
throw("Invalid Burnable config");

let owner_flag = functions.includes("owner™)
&& functions.includes("renounceownership")
&& functions.includes("transferownership");

if(config.ownable !== owner_flag) {
throw("Invalid ownable config");

let pause_flag = functions.includes("pause™)
&& functions.includes("unpause")
&& functions.includes("paused");
if(config.Pausable !== pause_flag) {
throw("Invalid Pausable config");

if(config.Pausable & !config.ownable) {
throw("Please check the calling permission of Pausable");

if(config.Mintable & !config.ownable) {
throw("Please check the calling permission of Mintable");

function convert(num) {
return ethers.getBigInt(num);

describe("Metadata unit Test", function () {
it("Metadata should be the same as expected", async function() {

const {instance,owner} = await loadFixture(deployTokenFixture);

expect(await instance.name()).eq(meta.tokenName,"TokenName does not
match");

expect(await instance.symbol()).eq(meta.tokensymbol, "Tokensymbol does
not match");

expect(await
instance.decimals()) .eq(meta.tokenDecimals, "tokenDecimals does not match");

11
Presented by Fairyproof

ZED20 Network Bridged Tokens
expect(await
instance.balanceof (owner.address)).eq(meta.initSupply,"InitSupply does not
match");
expect(await instance.totalsupply()).eq(meta.initSupply,"InitSupply
does not match");
1)
B)E

describe("Transfer unit test", function () {
it("Token transfer should emit event and change balance", async

function() {

const {instance,owner,alice,bob} = await
loadFixture(deployTokenFixture);

await expect(instance.transfer(alice.address,1000)).to.be.emit(

instance, "Transfer"

) .withArgs(owner.address,alice.address,1000);

expect(await instance.balanceof(alice.address)).eq(1000,"Balance of
alice does not match");

expect(await instance.balanceof(owner.address)).eq(meta.initSupply -
convert(1000),"Balance of owner does not match");

expect(await instance.totalSupply()).eq(meta.initSupply,"InitSupply
does not match'™);

await instance.connect(alice).transfer(bob.address,400);

expect(await instance.balanceof(alice.address)).eq(600,"Balance of
alice does not match while transferring to bob");

expect(await instance.balanceof(bob.address)).eq(400,"Balance of bob
does not match");

s

it("should be failed if sender doesn’t have enough tokens", async () => {
const {instance,alice} = await ToadFixture(deployTokenFixture);
await expect(instance.transfer(alice.address,meta.initSupply +

convert(1l))).to.be.revertedwith(
"ERC20: transfer amount exceeds balance"

)3

1)

I3 H

describe("Approve unit test", function (O {
it("Approve should change state and emit event", async () => {
const {instance,alice,bob} = await loadFixture(deployTokenFixture);
expect(await
instance.allowance(alice.address,bob.address)).eq(0,"Allowance0 does not match");

await
expect(instance.connect(alice).approve(bob.address,10000)).to.be.emit(
instance, "Approval"
) .withArgs(alice.address,bob.address,10000);
expect(await
instance.allowance(alice.address,bob.address)).eq(10000,"ATlowancel does not
match");

await
expect(instance.connect(alice).increaseAllowance(bob.address,2000)).to.be.emit(
instance, "Approval"
).withArgs(a11ce.address,bo%z?ddress,lzooo);

Presented by Fairyproof

ZED20 Network Bridged Tokens

expect(await
instance.allowance(alice.address,bob.address)).eq(12000,"Allowance2 does not
match");

await
expect(instance.connect(alice).decreaseAllowance(bob.address,3000)).to.be.emit(
instance, "Approval"
) .withArgs(alice.address,bob.address,9000);
expect(await
instance.alTlowance(alice.address,bob.address)) .eq(9000,"ATTowance3 does not
match");

s
s

describe("TransferFrom unit test", function () {
it("Token transferFrom should emit event and change state", async

function() {

const {instance,owner,alice} = await ToadFixture(deployTokenFixture);

const amount = 1000;

await instance.approve(alice.address,amount * 10);

await
expect(instance.connect(alice).transferFrom(owner.address,alice.address,amount)).
to.be.emit(

instance, "Transfer"
) .withArgs(owner.address,alice.address,amount);

expect(await instance.balanceof(alice.address)).eq(amount,"Balance of
alice does not match");

expect(await instance.balanceof(owner.address)).eq(meta.initSupply -
convert(amount),'"Balance of owner does not match");

expect(await instance.totalSupply()).eq(meta.initSupply, "InitSupply
does not match");

expect(await
instance.allowance(owner.address,alice.address)).eq(amount * 9,"AlTowance does
not match");

g

it("should be failed if the sender doesn't have enough approval"”, async
O =1
const {instance,owner,alice} = await ToadFixture(deployTokenFixture);
const amount = 1000;
await instance.approve(alice.address,amount - 1);
await
expect(instance.connect(alice).transferFrom(owner.address,alice.address,amount)).
to.be.revertedwith(
"ERC20: transfer amount exceeds allowance"
Dt
3

if(!meta.maxApprovalskip) {
return;

3

it("Maximum approval should not change while transferfFrom", async (O => {
const {instance,owner,alice} = await loadFixture(deployTokenFixture);

13

const amount = 1000;

Presented by Fairyproof

ZED20 Network Bridged Tokens

await instance.approve(alice.address,ethers.MaxUint256);

await
instance.connect(alice).transferFrom(owner.address,alice.address,amount);

expect(await
instance.allowance(owner.address,alice.address)).eq(ethers.Maxuint256,"AlTowance
does not match™);

s

s

describe("Burnable unit test", function() {
if(lconfig.Burnable) {
return;

it("Burn should change state and emit event", async () => {
const {instance,owner,alice} = await ToadFixture(deployTokenFixture);
await instance.transfer(alice.address,10000);

await expect(instance.connect(alice).burn(4000)).to.emit(
instance, "Transfer"

) .withArgs(alice.address,ethers.zeroAddress,4000);

expect(await instance.balanceof(alice.address)).eq(6000,"Balance of
alice does not match");

expect(await instance.totalsupply()).eq(meta.initSupply -
convert(4000),"InitSupply does not match');

s

it("BurnFrom should change allowance", async () => {

const {instance,owner,alice} = await ToadFixture(deployTokenFixture);

const amount = 1000;

await instance.approve(alice.address,amount * 10);

await
expect(instance.connect(alice).burnFrom(owner.address,amount)).to.be.emit(

instance,"Transfer"

) .withArgs (owner.address,ethers.zeroAddress,amount) ;

expect(await instance.balanceof(owner.address)).eq(meta.initSupply -
convert(amount),"Balance of owner does not match");

expect(await instance.totalsupply()).eq(meta.initSupply -
convert(amount),"InitSupply does not match");

expect(await
instance.allowance(owner.address,alice.address)).eq(amount * 9,"AlTowance does
not match");

s

it("should be failed if burner doesn’t have enough approval", async () =>

const {instance,owner,alice} = await loadFixture(deployTokenFixture);

const amount = 1000;

await instance.approve(alice.address,amount - 1);

await
expect(instance.connect(alice).burnFrom(owner.address,amount)).to.be.revertedwith
(

"ERC20: insufficient allowance"

¢ 14

Presented by Fairyproof

ZED20 Network Bridged Tokens
FDE

it("Maximum approval should not change while BurnFrom", async () => {
const {instance,owner,alice} = await ToadFixture(deployTokenFixture);
const amount = 1000;
await instance.approve(alice.address,ethers.MaxUint256);
await instance.connect(alice).burnFrom(owner.address,amount);
expect(await
instance.alTowance(owner.address,alice.address)).eq(ethers.Maxuint256,"Allowance
does not match'™);
3
3

describe("ownable unit test", function() {
if(!lconfig.ownable) {
return;

it("Renounce owner should change state and emit event', async () => {
const {instance,owner,alice} = await loadFixture(deployTokenFixture);
expect(await instance.owner()).eq(owner.address,"initial owner does
not match");

await expect(instance.renounceownership()).to.be.emit(
instance, "ownershipTransferred"
) .withArgs(owner.address,ethers.zeroAddress);

expect(await instance.owner()).eq(ethers.zeroAddress, "owner should be
zero");

s

it("change owner should change state and emit event", async () => {
const {instance,owner,alice} = await ToadFixture(deployTokenFixture);
expect(await instance.owner()).eq(owner.address,"initial owner does
not match");

await expect(instance.transferownership(alice.address)).to.be.emit(
instance, "ownershipTransferred"
) .withArgs(owner.address,alice.address);

expect(await instance.owner()).eq(alice.address,"owner does not
match");

s

it("only old owner can change or renounce owner", async () => {
const {instance,bob,alice} = await loadFixture(deployTokenFixture);
await
expect(instance.connect(alice).transferownership(bob.address)).to.be.revertedwith
(
"Oownable: caller is not the owner"
DE
await
expect(instance.connect(alice).renounceownership()).to.be.revertedwith(
"ownable: caller is not the owner"
Dt

s 15

Presented by Fairyproof

ZED20 Network Bridged Tokens
B¢

describe("Mintable unit test", function() {
if(lconfig.Mintable) {
return;

it("only owner can mint token", async (O => {
const {instance,bob,alice} = await loadFixture(deployTokenFixture);
await
expect(instance.connect(alice).mint(bob.address,10000)).to.be.revertedwith(
"ownable: caller is not the owner"
)3
1)

it("mint token can change supply and balance", async () => {
const {instance,alice} = await ToadFixture(deployTokenFixture);
await expect(instance.mint(alice.address,10000)).to.be.emit(
instance, "Transfer"
) .withArgs(ethers.zeroAddress,alice.address,10000);
expect(await instance.balanceof(alice.address)).eq(10000,"Balance of
alice does not match");
expect(await instance.totalsupply()).eq(meta.initSupply +
convert(10000),"TotalSupply does not match");
i3 H
35

describe("Pausable unit test", function() {
if(!lconfig.Pausable) {
return;

it("only owner can pause transfer", async () => {
const {instance,alice} = await loadFixture(deployTokenFixture);
await expect(instance.connect(alice).pause()).to.be.revertedwith(
"ownable: caller is not the owner"

);

await expect(instance.connect(alice).unpause()).to.be.revertedwith(
"Oownable: caller is not the owner"
)
3

it("Pause and unpause should change state and emit event", async () => {
const {instance,owner} = await ToadFixture(deployTokenFixture);
expect(await instance.paused()).to.be.false;

await expect(instance.pause()).to.be.emit(
instance, "Paused"
) .withArgs(owner.address);

expect(await instance.paused()).to.be.true;
await expect(instance.pause()).to.be.revertedwith("Pausable:
paused");
16
Presented by Fairyproof

ZED20 Network Bridged Tokens

await expect(instance.unpause()).to.be.emit(
instance, "Unpaused"”
) .withArgs(owner.address);

expect(await instance.paused()).to.be.false;
await expect(instance.unpause()).to.be.revertedwith("Pausable: not
paused");

s

it("TokenTransfer should be failed while paused”, async () => {
const {instance,owner,alice} = await loadFixture(deployTokenFixture);
await instance.pause();

await
expect(instance.transfer(alice.address,10000)).to.be.revertedwith(
"ERC20Pausable: token transfer while paused"

D&

await instance.approve(alice.address,100000);
await
expect(instance.connect(alice).transferFrom(owner.address,alice.address,1000))
.to.be.revertedwith("ERC20Pausable: token transfer while
paused");
1)
s

£)8

3. WZEDX.t.js

const {
loadFixture,
} = require("@nomicfoundation/hardhat-toolbox/network-helpers");
const { expect } = require('chai");
const { ethers } = require("hardhat");
const ethSigutil = require('eth-sig-util');

describe("wzZEDX Token uUnit Test", function (O {

async function deployTokenFixture() {
const [owner, alice,bob,...users] = await ethers.getSigners();
const PermittableToken = await
ethers.getContractFactory("PermittableToken");
const impl = await PermittableToken.deploy("TokenB","TokenB",9,56);

const TokenProxy = await ethers.getContractFactory("TokenProxy");
let proxy = await

TokenProxy.depTloy(impTl.target, "TokenA", "TokenA",18,31337,owner.address) ;
let instance = PermittableToken.attach(proxy.target);

const MockReceiver = await ethers.getContractFactory('"MockReceiver");

17
Presented by Fairyproof

af://n352

ZED20 Network Bridged Tokens

let receiver = await MockReceiver.deploy();

const MintableToken = await ethers.getContractFactory("MintableToken");
const mock_token = await MintableToken.deploy();

return {owner,alice,bob,users,instance,proxy,impl,receiver,mock_token};

const EIP712Domain = [
{ name: 'name', type: 'string' },
{ name: 'version', type: 'string' },
{ name: 'chainId', type: 'uint256' },
{ name: 'verifyingContract', type: 'address' 1},

18

async function domainSeparator (name, version, chainid, verifyingContract) {
return 'Ox' + ethSigutil.Typedbatautils.hashStruct(
'EIP712Domain',
{ name, version, chainid, verifyingContract },
{ EIP712Domain },
).tostring('hex');

describe("Proxy unit test", function() {
it("implementation unit test", async () => {
const {proxy,impl} = await loadFixture(deployTokenFixture);
expect(await proxy.implementation()).eq(impl.target);
i3

it("getTokenProxyInterfacesversion unit test", async () => {
const {proxy} = await loadFixture(deployTokenFixture);
const [major,minor,patch] = await

proxy.getTokenProxyInterfacesversion();

expect(major).eq(l);
expect(minor) .eq(0);
expect(patch).eq(0);

g

it("getTokenInterfacesversion unit test", async () => {
const {instance} = await ToadFixture(deployTokenFixture);
const [major,minor,patch] = await

instance.getTokenInterfacesversion();

expect(major) .eq(2);
expect(minor) .eq(5);
expect(patch).eq(0);

3

s

describe("Metadata unit test", function () {
it("Metadata should be the same as expected", async function() {
const {instance,impl,owner,alice} = await
loadFixture(deployTokenFixture);

expect(await instance.name()).eq("TokenA","TokenName does not
match");

18
Presented by Fairyproof

ZED20 Network Bridged Tokens
expect(await instance.symbol()).eq("TokenA","TokenSymbol does not
match");
expect(await instance.decimals()).eq(18,"TokenDecimals does not
match");
expect(await instance.balanceof(owner.address)).eq(0,"InitSupply does
not match");
expect(await instance.totalsupply()).eq(0,"InitSupply does not

match");
expect(await impl.name()).eq("TokenB","TokenName does not match");
expect(await impl.symbol()).eq("TokenB","Tokensymbol does not
match");
expect(await impl.decimals()).eq(9,"TokenDecimals does not match™);
expect(await impl.balanceof(owner.address)).eq(0,"InitSupply does not
match");
expect(await impl.totalsupply()).eq(0,"InitSupply does not match");
i3 H
3

describe("ownable unit test", function() {
it("Renounce owner should be reverted", async () => {
const {instance,owner} = await ToadFixture(deployTokenFixture);
expect(await instance.owner()).eq(owner.address,"initial owner does
not match");
await expect(instance.renounceownership()).to.be.reverted;
expect(await instance.owner()).eq(owner.address, "owner should be
zero");

s

it("change owner should change state and emit event", async () => {
const {instance,owner,alice} = await ToadFixture(deployTokenFixture);
expect(await instance.owner()).eq(owner.address,"initial owner does
not match");

await expect(instance.transferownership(alice.address)).to.be.emit(
instance,"ownershipTransferred"
) .withArgs(owner.address,alice.address);

expect(await instance.owner()).eq(alice.address,"owner does not
match");
D

it("only old owner can change owner", async () => {
const {instance,bob,alice} = await loadFixture(deployTokenFixture);
await
expect(instance.connect(alice).transferownership(bob.address)).to.be.reverted;
1
B¢

describe("Mintable unit test", function() {
it("Finish mint always be reverted", async () => {
const {instance,bob,alice} = await loadFixture(deployTokenFixture);
expect(await instance.mintingFinished()).eq(false);
await expect(instance.finishMinting()).to.be.reverted;
3
it("only owner can mint token”,lifync O = {

Presented by Fairyproof

ZED20 Network Bridged Tokens
const {instance,bob,alice} = await loadFixture(deployTokenFixture);
await
expect(instance.connect(alice).mint(bob.address,10000)).to.be.reverted;

s

it("mint token can change supply and balance", async () => {
const {instance,alice} = await ToadFixture(deployTokenFixture);
await expect(instance.mint(alice.address,10000)).to.be.emit(
instance,"Transfer(address,address,uint256)"
) .withArgs(ethers.zeroAddress,alice.address,10000);
expect(await instance.balanceof(alice.address)).eq(10000, "Balance of
alice does not match");
expect(await instance.totalSupply()).eq(10000,"TotalSupply does not
match");
1)
s

describe('BridgeContract unit test', () => {
it("setBridgeContract unit test", async () => {
const {instance,owner,alice,impl} = await
loadFixture(deployTokenFixture);
expect(await instance.bridgeContract()).eq(owner.address);

expect(await instance.isBridge(owner.address)).eq(true);
expect(await instance.isBridge(alice.address)).eq(false);

expect(await instance.isBridge(impl.target)).eq(false);

await
expect(instance.setBridgeContract(alice.address)).to.be.reverted;
await instance.setBridgeContract(impl.target);

expect(await instance.bridgeContract()).eq(impl.target);
expect(await instance.isBridge(owner.address)).eq(false);
expect(await instance.isBridge(impl.target)).eq(true);
1)
s

describe("Burnable unit test", function() {
it("Burn should change state and emit event", async () => {
const {instance,owner,alice} = await ToadFixture(deployTokenFixture);
await instance.mint(alice.address,10000);

await expect(instance.connect(alice).burn(4000)).to.emit(
instance, "Transfer(address,address,uint256)"
) .withArgs(alice.address,ethers.zeroAddress,4000);
expect(await instance.balanceof(alice.address)).eq(6000,"Balance of
alice does not match");
expect(await instance.totalSupply()).eq(6000,"InitSupply does not
match");

s

it("should be failed if burner doesn't have enough balance", async () =>

const {instance,owner,alice} = await loadFixture(deployTokenFixture);
const amount = 1000;
20

Presented by Fairyproof

ZED20 Network Bridged Tokens

await instance.mint(alice.address,amount - 1);
await expect(instance.connect(alice).burn(amount)).to.be.reverted;

)8

it("transferAndcall should be failed", async () => {
const {instance,alice} = await ToadFixture(deployTokenFixture);
await
expect(instance.transferAndcall(instance.target,0,"0x12345678")).to.be.reverted;
await
expect(instance.transferAndcall(ethers.zeroAddress,0,""0x12345678")) .to.be.reverte
d;
await
expect(instance.transferAndcall(alice.address,10,"0x12345678")).to.be.reverted;
3

it("transferAndcall to eoa should be successful”, async () => {
const {instance,alice,bob} = await loadFixture(deployTokenFixture);
await instance.mint(alice.address,10000);
await
expect(instance.connect(alice).transferAndcall(bob.address, 1000, "0x12345678")) .to
.be.emit(
instance,"Transfer(address,address,uint256,bytes)"
) .withArgs(
alice.address,bob.address, 1000, "0x12345678"
Dt

expect(await instance.balanceof(alice.address)).eq(9000,"Balance of
alice does not match");

expect(await instance.balanceof(bob.address)).eq(1000,"Balance of
alice does not match");

s

it("transferAndcall to contract should emit hooks", async () => {

const {instance,owner,receiver} = await
ToadFixture(deployTokenFixture);

await
expect(instance.transferAndcall(receiver.target,0, "0x12345678")).to.be.emit(

receiver,'"TokenReceived"
) .withArgs(owner.address,0,"0x12345678") ;
expect(await receiver.source()).eq(owner.address);

)8

it("transfer to bridge contract should emit hooks", async () => {

const {instance,owner,receiver} = await
loadFixture(deployTokenFixture);

await instance.mint(owner.address,10000);

await instance.transfer(receiver.target,1000);

expect(await instance.balanceof(receiver.target)).eq(1000,"Balance of
alice does not match");

expect(await receiver.source()).eq(ethers.zeroAddress, "Source of
receiver does not match");

await instance.setBridgeContract(receiver.target);

await expect(instance.transfer(receiver.target,1000)).to.be.emit(
receiver, "TokenReceived"

).withArgs(owner.address,10%%:"Ox");

Presented by Fairyproof

ZED20 Network Bridged Tokens

expect(await instance.balanceof(receiver.target)).eq(2000,"Balance of
alice does not match");

expect(await receiver.source()).eq(owner.address, "Source of receiver
does not match'™);

s

it("only owner can claim tokens", async () => {

const {instance,owner,alice,mock_token} = await
loadFixture(deployTokenFixture);

await mock_token.mint(instance.target,10000);

await
expect(instance.connect(alice).claimTokens(mock_token.target,alice.address)).to.b
e.reverted;

Tet addr = "0x" + "0".repeat(39) + "1";

await
expect(instance.claimTokens(mock_token.target,addr)).to.be.emit(

mock_token, "Transfer"
) .withArgs(instance.target,addr,10000);

// can't receive eth

await expect(owner.sendTransaction({
to:instance.target,
value:ethers.parseether("1.0")

})).to.be.reverted;

s
s

describe("Approve unit test", function O {
it("Approve should change state and emit event", async () => {
const {instance,alice,bob} = await loadFixture(deployTokenFixture);
expect(await
instance.alTowance(alice.address,bob.address)).eq(0, " "Allowance0 does not match™);

await
expect(instance.connect(alice).approve(bob.address,10000)).to.be.emit(
instance,"Approval"
).withArgs(alice.address,bob.address,10000);
expect(await
instance.allowance(alice.address,bob.address)).eq(10000,"Allowancel does not
match");

await
expect(instance.connect(alice).increaseAllowance(bob.address,2000)).to.be.emit(
instance, "Approval"
) .withArgs(alice.address,bob.address,12000);
expect(await
instance.alTowance(alice.address,bob.address)).eq(12000,"ATlowance2 does not
match");

await
expect(instance.connect(alice).decreaseAllowance(bob.address,3000)).to.be.emit(
instance, "Approval"
) .withArgs(alice.address,bob.address,9000);

22
Presented by Fairyproof

ZED20 Network Bridged Tokens

expect(await
instance.allowance(alice.address,bob.address)).eq(9000,"Allowance3 does not
match");

s
s

describe("PermittableToken unit test", function() {
const chain_id = 31337;

it ("DOMAIN_SEPARATOR unit test", async () => {
const {instance} = await loadFixture(deployTokenFixture);
Tet separator = await
domainSeparator("TokenA","1",31337,1instance.target);
expect(await instance.DOMAIN_SEPARATOR()) .eq(separator);
B

it("transferFrom without max approvals", async () => {

const {instance,alice,bob} = await loadFixture(deployTokenFixture);

await instance.mint(alice.address,1000000);

await instance.connect(alice).approve(bob.address,10000);

await
expect(instance.connect(bob).transferFrom(alice.address,bob.address,100)).to.be.e
mit(

instance, "Approval"

) .withArgs(alice.address,bob.address,9900);

expect(await
instance.alTowance(alice.address,bob.address)).eq(9900,"AlTowance does not
match");

expect(await instance.balanceof(alice.address)).eq(1000000 - 100);

expect(await instance.balanceof(bob.address)).eq(100);

awalt
expect(instance.connect(bob).transferFrom(alice.address,bob.address,10000)).to.be
.reverted;

await
expect(instance.connect(bob).transferFrom(alice.address,bob.address,9900)).to.be.
emit(

instance, "Approval"
) .withArgs(alice.address,bob.address,0);

s

it("transferFrom with max approvals", async () => {
const {instance,alice,bob} = await loadFixture(deployTokenFixture);
await instance.mint(alice.address,1000000);
await instance.connect(alice).approve(bob.address,ethers.Maxuint256);
await
expect(instance.connect(bob).transferFrom(alice.address,bob.address,100)).to.be.e
mit(
instance, "Transfer(address,address,uint256)"
) .withArgs(alice.address,bob.address,100);
expect(await
instance.allowance(alice.address,bob.address)) .eq(ethers.Maxuint256,"AlTowance
does not match™);

s

23
Presented by Fairyproof

ZED20 Network Bridged Tokens

it("permit with deadline test", async (O => {

const {instance,alice,bob} = await loadFixture(deployTokenFixture);
const domain = {

name: "TokenA",

version:"1",

chainId:chain_id,

verifyingContract:instance.target,

};
const types ={
"Permit": [
{name:"owner", type:"address"},
{name:"spender", type:"address"},
{name:"value", type:"uint256"},
{name:"nonce", type:"uint256"},
{name:"deadline", type:"uint256"},
1
};

const params = {
owner:alice.address,
spender:bob.address,
value:100000,
nonce:0,
deadline: 9876543210
5
Tet signature = await alice.signTypedData(domain,types,params);

const {v,r,s} ethers.Signature.from(signature);

await

expect(instance["permit(address,address,uint256,uint256,uint8,bytes32,bytes32)"](

params.owner,

params.spender,

params.value,

params.deadline,

v,

r,

s
)).to.be.emit(

instance, "Approval"
).withArgs(alice.address,bob.address,100000);
expect(await

instance.allowance(alice.address,bob.address)).eq(100000,"AlTowance does not

match");

// permit twice should be failed
await

expect(instance["permit(address,address,uint256,uint256,uint8,bytes32,bytes32)"](

s

params.owner,
params.spender,
params.value,
params.deadline,
V,
r,
s
)).to.be.reverted;

24

Presented by Fairyproof

ZED20 Network Bridged Tokens
it("permit with expiry", async (O => {
const {instance,alice,bob} = await loadFixture(deployTokenFixture);
Tet block = await ethers.provider.getBlockNumber();
const {timestamp} = await ethers.provider.getBlock(block);
const domain = {
name: "TokenA",
version:"1",
chainId:chain_id,
verifyingContract:instance.target,
3
const types ={
"Permit": [
{name:"holder", type:"address"},
{name:"spender", type:"address"},
{name:"nonce", type:"uint256"},
{name:"expiry", type:"uint256"},
{name:"allowed", type:"bool"},

};
const params = {
holder:alice.address,
spender:bob.address,
nonce:0,
expiry: timestamp + 5,
allowed: true
};
Tet signature = await alice.signTypedData(domain,types,params);
const {v,r,s} = ethers.Signature.from(signature);

awailt
expect(instance["permit(address,address,uint256,uint256,bool,uint8,bytes32,bytes3
2)"1(
params.holder,
params.spender,
params.nonce,
params.expiry,
params.allowed,
vV,
r,
s
)).to.be.emit(
instance, "Approval"
) .withArgs(alice.address,bob.address,ethers.Maxuint256);

expect(await
instance.expirations(alice.address,bob.address)).eq(timestamp + 5);

// transfer from
await
instance.connect(bob).transferFrom(alice.address,bob.address,0);

await ethers.provider.send("evm_mine", [timestamp + 7]1);

await
expect(instance.connect(bob).transferFrom(alice.address,bob.address,0)).to.be.rev

25

erted;

Presented by Fairyproof

ZED20 Network Bridged Tokens

// reset the approval to transferFrom
await instance.connect(alice).approve(bob.address,ethers.Maxuint256 -

ethers.getBigInt(1));

await
instance.connect(bob).transferFrom(alice.address,bob.address,0);

// expirations not change

expect(await
instance.expirations(alice.address,bob.address)).eq(timestamp + 5);

s

it("permit with expiry and reset by approve", async () => {
const {instance,alice,bob} = await loadFixture(deployTokenFixture);
Tet block = await ethers.provider.getBlockNumber();
const {timestamp} = await ethers.provider.getBlock(block);
const domain = {
name:"TokenA",
version:"1",
chainId:chain_id,
verifyingContract:instance.target,

};
const types ={
"Permit": [
{name:"holder", type:"address"},
{name:"spender", type:"address"},
{name:"nonce", type:"uint256"},
{name:"expiry", type:"uint256"},
{name:"allowed", type:'"bool"},
1
};

const params = {
holder:alice.address,
spender:bob.address,
nonce:0,
expiry: timestamp + 5,
allowed: true
55
Tet signature = await alice.signTypedData(domain,types,params);
const {v,r,s} = ethers.Signature.from(signature);

await
expect(instance["permit(address,address,uint256,uint256,bool,uint8,bytes32,bytes3
2)"1(
params.holder,
params.spender,
params.nonce,
params.expiry,
params.allowed,
v,
r,
s
)).to.be.emit(
instance, "Approval"
).withArgs(a11ce.address,bogzsddress,ethers.Mainnt256);

Presented by Fairyproof

ZED20 Network Bridged Tokens

expect(await
instance.expirations(alice.address,bob.address)).eq(timestamp + 5);

// transfer from
await
instance.connect(bob).transferFrom(alice.address,bob.address,0);

await ethers.provider.send("evm_mine", [timestamp + 7]);

await
expect(instance.connect(bob).transferFrom(alice.address,bob.address,0)).to.be.rev
erted;

// reset the approval to transferFrom

await instance.connect(alice).approve(bob.address,ethers.MaxuUint256);
// expirations is reset to zero

expect(await instance.expirations(alice.address,bob.address)).eq(0);

await
instance.connect(bob).transferFrom(alice.address,bob.address,0);

s

it("permit with expiry and reset by permit", async () => {
const {instance,alice,bob} = await loadFixture(deployTokenFixture);
Tet block = await ethers.provider.getBlockNumber();
const {timestamp} = await ethers.provider.getBlock(block);
const domain = {
name:"TokenA",
version:"1",
chainId:chain_id,
verifyingContract:instance.target,
};
const types ={
"Permit": [
{name:"holder", type:"address"},
{name:"spender", type:"address"},
{name:"nonce", type:"uint256"},
{name:"expiry", type:"uint256"},
{name:"allowed", type:'"bool"},

};
const params = {
holder:alice.address,
spender:bob.address,
nonce:0,
expiry: timestamp + 5,
allowed: true
3
Tet signature = await alice.signTypedData(domain,types,params);

const {v,r,s} ethers.Signature.from(signature);
await
expect(instance["permit(address,address,uint256,uint256,bool,uint8,bytes32,bytes3

2)"1(97

Presented by Fairyproof

ZED20 Network Bridged Tokens

params.holder,
params.spender,
params.nonce,
params.expiry,
params.allowed,
v,
r,
s
)).to.be.emit(
instance, "Approval"
) .withArgs(alice.address,bob.address,ethers.Maxuint256);

expect(await
instance.expirations(alice.address,bob.address)).eq(timestamp + 5);

// transfer from
await
instance.connect(bob).transferFrom(alice.address,bob.address,0);

await ethers.provider.send("evm_mine", [timestamp + 7]1);

await
expect(instance.connect(bob).transferFrom(alice.address,bob.address,0)).to.be.rev
erted;

// reset the approval to transferFrom
{
const domain = {
name: "TokenA",
version:"1",
chainId:chain_id,
verifyingContract:instance.target,

5
const types ={
"Permit": [
{name:"owner", type:"address"},
{name:"spender", type:"address"},
{name:"value", type:"uint256"},
{name:"nonce", type:"uint256"},
{name:"deadline", type:"uint256"},
1
5

const params = {
owner:alice.address,
spender:bob.address,
value:ethers.MaxuUint256,
nonce:1,
deadline: 9876543210
};
Tet signature = await alice.signTypedbata(domain,types,params);
const {v,r,s} = ethers.Signature.from(signature);
await
expect(instance["permit(address,address,uint256,uint256,uint8,bytes32,bytes32)"](
params.owner,
params.spender,
params.value,

28
Presented by Fairyproof

ZED20 Network Bridged
params.deadline,
v,
r,
s
)).to.be.emit(
instance, "Approval"
) .withArgs(alice.address,bob.address,params.value);
}
// expirations is reset to zero
expect(await instance.expirations(alice.address,bob.address)).eq(0);
// transfer from successfully
await
instance.connect(bob).transferFrom(alice.address,bob.address,0);

s

it("Alias method push test", async () => {

const {instance,alice,bob} = await loadFixture(deployTokenFixture);

await instance.mint(alice.address,10000);

await
expect(instance.connect(alice).push(bob.address,100)).to.be.emit(

instance,"Transfer(address,address,uint256)"

) .withArgs(alice.address,bob.address,100);

expect(await instance.balanceof(alice.address)).eq(10000 -
100, "Balance of alice does not match");

expect(await instance.balanceof(bob.address)).eq(100,"Balance of bob
does not match");

expect(await instance.totalsupply()).eq(10000);
E)E

it("Alias method pull test", async () => {

const {instance,alice,bob} = await loadFixture(deployTokenFixture);

await instance.mint(alice.address,10000);

await instance.connect(alice).approve(bob.address,300);

await
expect(instance.connect(bob).pull(alice.address,100)).to.be.emit(

instance,"Transfer(address,address,uint256)"

) .withArgs(alice.address,bob.address,100);

expect(await instance.balanceof(alice.address)).eq(10000 -
100, "Balance of alice does not match");

expect(await instance.balanceof(bob.address)).eq(100,"Balance of bob
does not match");

expect(await instance.totalsupply()).eq(10000);

expect(await
instance.allowance(alice.address,bob.address)).to.eq(200);

s

it("Alias method move test", async () => {

const {instance,alice,bob,users} = await
ToadFixture(deployTokenFixture);

await instance.mint(alice.address,10000);

await instance.connect(alice).approve(bob.address,300);

await
expect(instance.connect(bob) .move(alice.address,users[0].address,100)).to.be.emit
(

instance, "Transfer(address,address,uint256)"
).withArgs(a11ce.address,usigf[OJ.address,lOO);

Tokens

Presented by Fairyproof

ZED20 Network Bridged Tokens

expect(await instance.balanceof(alice.address)).eq(10000 -
100, "Balance of alice does not match");

expect(await instance.balanceof(bob.address)).eq(0,"Balance of bob
does not match™);

expect(await instance.balanceof(users[0].address)).eq(100,"Balance of
users[0] does not match");

expect(await instance.totalsupply()).eq(10000);

expect(await
instance.allowance(alice.address,bob.address)).to.eq(200);

FDE
I3 H

// Can be used maliciously
describe("Transfer zero demo", function() {
it("transfer zero amounts can be successful"”, async () => {
const {instance,alice,bob} = await loadFixture(deployTokenFixture);
await
expect(instance.connect(alice).transfer(bob.address,0)).to.be.emit(
instance, "Transfer(address,address,uint256)"
) .withArgs(alice.address,bob.address,0);
1)
s
I3 H

4. UnitTestOutput

Team Token Unit Test
Metadata unit Test
v Metadata should be the same as expected (1056ms)
Transfer unit test
v Token transfer should emit event and change balance
v Should be failed if sender doesn’t have enough tokens
Approve unit test
v Approve should change state and emit event
TransferFrom unit test
v Token transferFrom should emit event and change state
v Should be failed if the sender doesn't have enough approval

WZEDX Token Unit Test
Proxy unit test
v implementation unit test (61ms)
v getTokenProxyInterfacesversion unit test
v getTokenInterfacesversion unit test
Metadata unit test
v Metadata should be the same as expected
Oownable unit test
v Renounce owner should be reverted
v Change owner should change state and emit event
v only old owner can change owner
Mintable unit test

30
Presented by Fairyproof

af://n356

ZED20 Network Bridged Tokens

v Finish mint always be reverted

v only owner can mint token

v mint token can change supply and balance
BridgeContract unit test

v setBridgeContract unit test
Burnable unit test

v Burn should change state and emit event
Should be failed if burner doesn't have enough balance
transferAndcall should be failed
transferAndcall to eoa should be successful
transferAndcall to contract should emit hooks

LKL LKL

transfer to bridge contract should emit hooks
v only owner can claim tokens
Approve unit test
v Approve should change state and emit event
PermittableToken unit test
v DOMAIN_SEPARATOR unit test
transferFrom without max approvals
transferFrom with max approvals
permit with deadline test
permit with expiry
permit with expiry and reset by approve
permit with expiry and reset by permit
Alias method push test
Alias method pull test
v Alias method move test

O NS SR NRE

Transfer zero demo
v transfer zero amounts can be successful

36 passing (2s)

11.2 External Functions Check Points

1. TeamToken.sol_output.md

File: contracts/TeamToken.sol

contract: TeamToken is ERC20

(Empty fields in the table represent things that are not required or relevant)

Index Function StateMutability Modifier z::]:: IsUseriInterface _l::sl: Miscellaneous
1 name() view Passed
2 symbol() view Passed
3 decimals() view Passed
4 totalSupply() view Passed

31
Presented by Fairyproof

af://n361
af://n363
af://n365

ZED20 Network Bridged Tokens

Index Function StateMutability Modifier z:':r IsUserInterface _Il_j:s': Miscellaneous
5 balanceOf(address) view Passed
6 transfer(address,uint256) Yes Yes Passed
7 allowance(address,address) view Passed
8 approve(address,uint256) Yes Passed
9 transferFrom(address,address,uint256) Yes Yes Passed
10 increaseAllowance(address,uint256) Yes Passed
11 decreaseAllowance(address,uint256) Yes Passed

2. TokenProxy.sol_output.md

File: contracts/TokenProxy.sol

contract: TokenProxy is Proxy

(Empty fields in the table represent things that are not required or relevant)

Param Unit

Index Function StateMutability Modifier chiétk IsUserlInterface _— Miscellaneous
1 implementation() view Passed
2 getTokenProxylnterfacesVersion() pure Passed
3 fallback() payable Passed

File: contracts/PermittableToken.sol

contract: PermittableToken is ERC677BridgeToken
(Empty fields in the table represent things that are not required or relevant)

Param Unit

Index Function StateMutability Modifier Check IsUserInterface S Miscellaneous
1 transferFrom(address,address,uint256) Yes Yes Passed
2 approve(address,uint256) Yes Passed
3 increaseAllowance(address,uint256) Yes Passed
4 push(address,uint256) Yes Passed
5 pull(address,uint256) Yes Passed
6 move(address,address,uint256) Yes Passed
7 permit(address,address,uint256,uint256,bool,uint8,bytes32,bytes32) Yes Yes Passed
8 permit(address,address,uint256,uint256,uint8,bytes32,bytes32) Yes Yes Passed
9 bridgeContract() view Passed
10 setBridgeContract(address) onlyowner No Passed
11 transferAndCall(address,uint256,bytes) validrecipient(_to) Yes Yes Passed
12 getTokenlInterfacesVersion() pure Passed
13 transfer(address,uint256) Yes Yes Passed
14 isBridge(address) view Passed
15 finishMinting() No passed | Aways
Reverted
16 renounceOwnership() onlyowner No Passed RTEDD
Reverted
17 claimTokens(address,address) onlyowner No Passed

32
Presented by Fairyproof

af://n481
af://n483
af://n526

20

21

22

23

24

25

26

Function

decreaseAllowance(address,uint256)
burn(uint256)
totalSupply()

balanceOf(address)

mint(address,uint256)

allowance(address,address)
increaseApproval(address,uint256)
decreaseApproval(address,uint256)

transferOwnership(address)

StateMutability Modifier

view
view
hasmintPermission,
canmint
view
onlyowner

33

ZED20 Network Bridged Tokens

Param
Check

IsUserInterface

Yes

Yes

No

Yes

Yes

No

Presented by Fairyproof

Unit
Test

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Miscellaneous

FAIRYPROOF

https://medium.com/@FairyproofT
https://twitter.com/FairyproofT
https://www.linkedin.com/company/fairyproof-tech
https://t.me/Fairyproof_tech

Reddit: https://www.reddit.com/user/FairyproofTech

0065086

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to Zedx
	04. Major functions of audited code
	USDT.z
	BTC.z
	USDC.z
	ETH.z
	WZEDX

	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08. issues by severity
	- N/A

	09. Issue descriptions
	- N/A

	10. Recommendations to enhance the overall security
	- N/A

	11. Appendices
	11.1 Unit Test
	1. MockReceiver.sol
	2. TeamToken.t.js
	3. WZEDX.t.js
	4. UnitTestOutput

	11.2 External Functions Check Points
	1. TeamToken.sol_output.md
	File: contracts/TeamToken.sol
	2. TokenProxy.sol_output.md
	File: contracts/TokenProxy.sol
	File: contracts/PermittableToken.sol

