@ FAIRYPROOF

Simpsonsinu Token
AUDIT REPORT

Version 1.0.0

Serial No. 2023052600012023
Presented by Fairyproof

May 26, 2023

Simpsonsinu Token

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Simpsonsinu Token
project.

Audit Start Time:

May 24, 2023

Audit End Time:

May 26, 2023

Audited Source File's Address:

https://bscscan.com/address/0x5¢c97dAb7bc2c01556FbE3d06a09b8C559Dff7d5#code

The goal of this audit is to review Simpsonsinu’s solidity implementation for its Token function, study potential
security vulnerabilities, its general design and architecture, and uncover bugs that could compromise the
software in production.

We make observations on specific areas of the code that present concrete problems, as well as general
observations that traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Simpsonsinu team for
specified versions. Whenever the code, software, materials, settings, environment etc is changed, the
comments of this audit will no longer apply.

— Disclaimer

Note that as of the date of publishing, the contents of this report reflect the current understanding of known
security patterns and state of the art regarding system security. You agree that your access and/or use,
including but not limited to any associated services, products, protocols, platforms, content, and materials, will
be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming language, or
other programming aspects that could present security risks. If the audited source files are smart contract
files, risks or issues introduced by using data feeds from offchain sources are not extended by this review
either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further
testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with this
report, its content, and the related services and products and your use thereof, including, without limitation,
the implied warranties of merchantability, fitness for a particular purpose, and non-infringement.

Presented by Fairyproof

af://n2
https://bscscan.com/address/0x5cc97dAb7bc2c01556FbE3d06a09b8C559Dff7d5#code
af://n16

Simpsonsinu Token

We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or
offered by a third party through the product, any open source or third-party software, code, libraries,
materials, or information linked to, called by, referenced by or accessible through the report, its content, and
the related services and products, any hyperlinked websites, any websites or mobile applications appearing on
any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction
between you and any third-party providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY
ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology

The above files' code was studied in detail in order to acquire a clear impression of how the its specifications
were implemented. The codebase was then subject to deep analysis and scrutiny, resulting in a series of
observations. The problems and their potential solutions are discussed in this document and, whenever
possible, we identify common sources for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:
1. Code Review, Including:
e Project Diagnosis

Understanding the size, scope and functionality of your project's source code based on the specifications,
sources, and instructions provided to Fairyproof.

e Manual Code Review
Reading your source code line-by-line to identify potential vulnerabilities.
e Specification Comparison

Determining whether your project's code successfully and efficiently accomplishes or executes its functions
according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:
e Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or executed
when test cases are run.

e Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to execute its
functions.

3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest established
industry and academic practices, recommendations, and research.

Presented by Fairyproof

af://n24
af://n58

Simpsonsinu Token

— Structure of the document

This report contains a list of issues and comments on all the above source files. Each issue is assigned a
severity level based on the potential impact of the issue and recommendations to fix it, if applicable. For ease
of navigation, an index by topic and another by severity are both provided at the beginning of the report.

— Documentation

For this audit, we used the following source(s) of truth about how the token issuance function should work:

Website:https://thesimpsonsinu.com/

Whitepaper:https://thesimpsonsinu.com/wp-content/uploads/2023/05/WhitePaperV1.pdf

Source Code: https://bscscan.com/address/0Ox5cc97dAb7bc2c01556FbE3d06a09b8C559Dff7d5#code

These were considered the specification, and when discrepancies arose with the actual code behavior, we
consulted with the Simpsonsinu team or reported an issue.

— Comments from Auditor

Serial Number Auditor Audit Time Result
2023052600012023 Fairyproof Security Team May 24, 2023 - May 26, 2023

B o critical @ Al Resolved:

2 B o High @ Al Resolved!

Total Findings Medium @) All Resolvedt!
W ow 2 0 Resolved

0% RESO) B o info @ All Resolved!

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project. During the
audit, two issues of low-severity were uncovered. The Simpsonsinu team acknowledged all the issues.

Presented by Fairyproof

af://n58
af://n61
https://thesimpsonsinu.com/
https://thesimpsonsinu.com/wp-content/uploads/2023/05/WhitePaperV1.pdf
https://bscscan.com/address/0x5cc97dAb7bc2c01556FbE3d06a09b8C559Dff7d5#code
af://n68
af://n85

Simpsonsinu Token

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits for
organizations. Fairyproof has developed industry security standards for designing and deploying blockchain
applications.

03. Introduction to Simpsonsinu

The Simpsons Inu is a brand new BSC Project for 2023 that focuses on bringing the latest developmental
dAPPs as well as being a great meme focused community token.

The above description is quoted from relevant documents of Simpsonsinu.

04. Major functions of audited code

The audited code mainly implements a token issuance function. Here are the details:

e Blockchain: BSC

e Token Standard: ERC20

e Token Address: 0x5cc97dAb7bc2c01556FbE3d06a09b8C559Dff7d5
e Token Name: The Simpsons Inu

e Token Symbol: SIMPSONSINU

e Decimals: 9

e Current Supply: 407917405321925985343791

e Max Supply: 420690000000000000000000

e Burnable: Yes

e Taxable: Yes

Note:

Simpsonsinu charges three kinds of fees: tax fee, market fee and buyback fee. All the fees are charged in
token transfers and the total fee rate is 9%. The token that is sent to specified UniswapPairs is charged by 3%
tax fee, 3% buyback fee and 5% market fee, and other token transfers charge 0% tax fee, 0% buyback fee and
9% market fee.

Tokens that are charged as buyback fees are burned.

Tokens that are charged as market fees are exchanged to BNBs and sent to a specific address.

Presented by Fairyproof

af://n85
https://www.fairyproof.com/
af://n89
af://n94

05. Coverage of issues

Simpsonsinu Token

The issues that the Fairyproof team covered when conducting the audit include but are not limited to the

following ones:

e Access Control

e Admin Rights

e Arithmetic Precision

e Code Improvement

e Contract Upgrade/Migration
e Delete Trap

e Design Vulnerability

e DoS Attack

e EOA Call Trap

e Fake Deposit

e Function Visibility

e Gas Consumption

e Implementation Vulnerability
e |nappropriate Callback Function
e Injection Attack

e Integer Overflow/Underflow
e [sContract Trap

e Miner's Advantage

e Misc

e Price Manipulation

e Proxy selector clashing

e Pseudo Random Number

e Re-entrancy Attack

e Replay Attack

e Rollback Attack

e Shadow Variable

e Slot Conflict

e Token Issuance

e Tx.origin Authentication

e Uninitialized Storage Pointer

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

Presented by Fairyproof

af://n126
af://n193

Simpsonsinu Token

severity issues need to be fixed as soon as possible.
@ severity issues will probably bring problems and should be fixed.
Medium severity issues could potentially bring problems and should eventually be fixed.

severity issues are minor details and warnings that can remain unfixed but would be better fixed at
some point in the future.

Tlianial -1 is not an issue or risk but a suggestion for code improvement.

07. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks related to the
following functions or areas.

- Function Implementation

We checked whether or not the functions were correctly implemented.
We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control

We checked each of the functions that could modify a state, especially those functions that could only be
accessed by owner or administrator
We didn't find issues or risks in these functions or areas at the time of writing.

- Token Issuance & Transfer

We examined token issuance and transfers for situations that could harm the interests of holders.
We didn't find issues or risks in these functions or areas at the time of writing.

- State Update

Presented by Fairyproof

af://n207
af://n211
af://n214
af://n217
af://n220

Simpsonsinu Token

We checked some key state variables which should only be set at initialization.
We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security

We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous

We checked the code for optimization and robustness.
We found some issues, for more details please refer to [FP-1,FP-2] in "09. Issue description".

08. List of issues by severity

Index Title Issue/Risk Severity Status
FP-1 Possibly Transferring Tokens to Zero Address Code Improvement Low
FP-2 Incorrect Algorithm in reflectionFromToken Design Vulnerability Low

09. Issue descriptions

[FP-1] Possibly Transferring Tokens to Zero Address

Low
Issue/Risk: Code Improvement
Description:

The _transfer function doesn't check if to != address(0) holds true therefore tokens may be transferred

to the zero address.

Recommendation:

Consider adding a requirement to check if it sends tokens to the zero address.
Update/Status:

The SIMPSONSINU team has acknowledged the issue.

Presented by Fairyproof

af://n223
af://n226
af://n230
af://n253

Simpsonsinu Token

[FP-2] Incorrect Algorithm in reflectionFromToken

Low
Issue/Risk: Design Vulnerability
Description:

The reflectionFromToken function uses _taxFee, _marketingFee and _buybackFee to calculate tAmount.
However the value of these variables changes when _tokenTransfer changes and reflectionFromToken

gets a result dependent on _tokenTransfer.
Recommendation:

Consider using parameters passed onto the function to calculate rather than using these variables to
calculate.

Update/Status:

The SIMPSONSINU team has acknowledged the issue.

10. Recommendations to enhance the overall
security

We list some recommendations in this section. They are not mandatory but will enhance the overall security of
the system if they are adopted.

e Consider managing the owner's access control with great care and transfering it to a multi-sig wallet or
DAO when necessary.

11. Appendices

11.1 Unit Test

Presented by Fairyproof

af://n278
af://n286
af://n288

Simpsonsinu Token

1. Simpsonsinu.t.js

const { expect } = require("chai");

const { ethers } require("hardhat");
const { anyvalue } = require("@nomicfoundation/hardhat-chai-matchers/withArgs");

describe("unit test of SimpsonsiInu token", (O => {
let owner, userl, user2, users;
let simpsonsInu;

const tokenName = "The Simpsons Inu";
const tokenSymbol = "SIMPSONSINU";
const tokenbDecimals = 9;
const tokenTotalSupply = ethers.utils.parseunits("420690000000000", tokenDecimals);
const marketingwallet = "0x1478fDbC46F432e6c48866bCC7a21285C00f31Ed";
"0x7a250d5630B4cF539739dF2C5dAch4c659F2488D";
const tradingEnabled = false;
const swapTokensAtAmount = tokenTotalSupply.div(5000);
const pinklock = "0x407993575c91ce7643a4d4cCACCIA98c36eE1BBE";
const dead = "0x000000000000000000000000000000000000dead" ;
const maxuint256 =
ethers.BigNumber. from("Oxffffffffffrfffffffrffffftrrffffftrrrfffftrrrfffftrrrfffffrrrfffeet")

const uniswapV2Router

const ZERO_ADDRESS = ethers.constants.Addresszero;

beforeEach(async () =>{
[owner, userl, user2, ...users] = await ethers.getSigners();
const simpsonsInu_contract = await ethers.getContractFactory('SIMPSONSINU', owner);
simpsonsInu = await simpsonsInu_contract.deploy();

s

describe("Token init unit test", (O => {
it("Initial state should equal with the params of constructor", async (O => {
expect(await simpsonsInu.name()).to.be.equal(tokenName);
expect(await simpsonsInu.symbol()).to.be.equal(tokensSymbol);
expect(await simpsonsInu.decimals()).to.be.equal(tokenbDecimals);
expect(await simpsonsInu.owner()).to.be.equal(owner.address);
expect(await simpsonsInu.totalSupply()).to.be.equal(tokenTotalSupply);

expect(await simpsonsInu.marketingwallet()).to.be.equal(marketingwallet);
expect(await simpsonsInu.uniswapV2Router()).to.be.equal(uniswapV2Router);
expect(await simpsonsInu.tradingEnabled()).to.be.equal(tradingEnabled);
expect(await simpsonsInu.swapTokensAtAmount()).to.be.equal(swapTokensAtAmount);

expect(await
simpsonsInu.balanceof(owner.address)).to.be.equal(tokenTotalSupply);

s

it("Initial state of _isExcluded and _isExcludedFromFees", async () => {

Presented by Fairyproof

af://n290

simpsonsInu.

simpsonsInu.

simpsonsInu.
1
1

Simpsonsinu Token

expect(await

isExcludedFromReward(simpsonsInu.address)).to.be.equal(true);

expect(await simpsonsInu.isExcludedFromReward(dead)).to.be.equal(true);
expect(await simpsonsInu.iseExcludedFromReward(pinklock)).to.be.equal(true);
expect(await simpsonsInu.isExcludedFromReward(await
uniswapVv2Pair())).to.be.equal(true);

expect(await simpsonsInu.isExcludedFromFee(owner.address)).to.be.equal(true);
expect(await simpsonsInu.isExcludedFromFee(dead)).to.be.equal(true);
expect(await simpsonsInu.isExcludedFromFee(pinklock)).to.be.equal(true);
expect(await

isExcludedFromFee(simpsonsInu.address)).to.be.equal(true);

describe("owner and onlyowner unit test", (O => {

it("Account permissions only controled by owner", async () => {

await

expect(simpsonsinu.connect(userl).excludeFromReward(userl.address)).to.be.revertedwith("own

able: caller is not the owner");

await

expect(simpsonsInu.connect(userl).enableTrading()).to.be.revertedwith("ownable: caller is

not the owner");

await expect(simpsonsInu.connect(userl).excludeFromFees(userl.address,

true)).to.be.revertedwith("ownable: caller is not the owner");

await

expect(simpsonsInu.connect(userl).renounceownership()).to.be.revertedwith("ownable: caller

is not the owner");

s

it("renounceownership should emit the event", async (O => {

s

await expect(simpsonsInu.renounceownership()).to.emit(
simpsonsInu, "OwnershipTransferred"
) .withArgs(owner.address, ethers.constants.Addresszero);

it("transfer should failed before enableTrading", async (O => {

await simpsonsiInu.transfer(userl.address, 10000);
await expect(simpsonsInu.connect(userl).transfer(user2.address,

10000)) .to.be.revertedwith("Trading is not enabled yet");

s
NE

describe("Approve and transferFrom unit test", (O => {

it("Approve should change allowance and change state", async (O => {

simpsonsInu.

simpsonsInu.

expect(await
allowance(owner.address,userl.address)).to.be.equal(0);

await expect(simpsonsInu.approve(userl.address, 10000)).to.be.emit(
simpsonsInu, "Approval"

) .withArgs(owner.address,userl.address, 10000);

expect(await

allowance(owner.address,userl.address)).to.be.equal(10000);

10 Presented by Fairyproof

Simpsonsinu Token

await expect(simpsonsInu.increaseAllowance(userl.address, 10000)).to.be.emit(
simpsonsInu, "Approval"
) .withArgs(owner.address,userl.address, 20000);
expect(await
simpsonsInu.allowance(owner.address,userl.address)).to.be.equal(20000);

await expect(simpsonsInu.decreaseAllowance(userl.address, 10000)).to.be.emit(
simpsonsInu, "Approval”
) .withArgs(owner.address,userl.address, 10000);
expect(await
simpsonsInu.allowance(owner.address,userl.address)).to.be.equal(10000);

s

it("Transfer from should change allowance", async () => {
await expect(simpsonsInu.connect(userl).transferFrom(owner.address,
userl.address, 1000)).to.be.reverted;
await simpsonsInu.connect(owner).approve(userl.address, 10000);
await expect(simpsonsInu.connect(userl).transferFrom(owner.address,
userl.address, 1000)).to.be.emit(
simpsonsInu, "Transfer"
) .withArgs(owner.address,userl.address, 1000);
expect(await simpsonsInu.allowance(owner.address,
userl.address)).to.be.equal (10000 - 1000);
L
i3 H

describe("Reflection unit test", function() {

it("reflectionFromToken and tokenFromReflection ", async () => {
const max = ethers.constants.MaxuUint256;
const rTotal = max.sub(max.mod(tokenTotalSupply));

const rate = rTotal.div(tokenTotalSupply);

Tet tAmount = ethers.BigNumber.from("1000000");

let rAmount rate.mul (tAmount) ;

expect(await simpsonsInu.reflectionFromToken(tAmount,
false)).to.equal(rAmount);
expect(await simpsonsInu.reflectionFromToken(tAmount, true)).to.equal(rAmount);

// Transfer change "_taxFee . _marketingFee . _buybackFee"
await simpsonsInu.enableTrading();

await simpsonsInu.transfer(userl.address, 10000);

await simpsonsInu.connect(userl).transfer(user2.address, 10000)

expect(await simpsonsInu.reflectionFromToken(tAmount,
false)).to.equal(rAmount);
expect(await simpsonsInu.reflectionFromToken(tAmount, true)).to.equal(rAmount);

expect(await simpsonsInu.tokenFromrReflection(rAmount)).to.equal(tAmount);

s
s

describe("Transfer unit test", () => {

11 Presented by Fairyproof

Simpsonsinu Token

it("Transfer to zero address should be failed", async (O => {
await simpsonsInu.enableTrading(Q);
await expect(simpsonsInu.transfer(ZERO_ADDRESS,
100)) .to.be.revertedwith("BEP20: transfer to the zero address");
3

it("Transfer zero value should be failed", async (O => {
expect(await simpsonsInu.balanceof(userl.address)).to.be.equal(0);
await expect(simpsonsInu.connect(userl).transfer(user2.address,
0)).to.be.revertedwith(
"Transfer amount must be greater than zero"
s
B

it("Transfer token beyond balance should be failed", async () => {
await simpsonsInu.enableTrading(Q);
await
expect(simpsonsInu.connect(userl).transfer(user2.address,10)).to.be.reverted;

s

it("Transfer from address of from excludeFee and to excludeFee", async () => {
expect(await simpsonsInu.balanceof(userl.address)).to.equal(0);
expect(await simpsonsInu.balanceof(user2.address)).to.equal(0);

const value = ethers.utils.parseunits("10000", 9);
await simpsonsiInu.transfer(userl.address, value);
expect(await simpsonsInu.balanceof(userl.address)).to.equal(value);

await simpsonsInu.excludeFromFees(user2.address, true);
await simpsonsInu.connect(userl).transfer(user2.address, value)
expect(await simpsonsInu.balanceof(user2.address)).to.equal(value);

s

it("common Transfer", async () => {
expect(await simpsonsInu.balanceof(userl.address)).to.equal(0);
expect(await simpsonsInu.balanceof(user2.address)).to.equal(0);

const value = ethers.utils.parseunits("10000", 9);
await simpsonsiInu.transfer(userl.address, value);

await simpsonsInu.enableTrading();

await simpsonsInu.connect(userl).transfer(user2.address, value)

const marketingFee = value.mul1(9).div(100);

expect(await simpsonsInu.balanceof(user2.address)).to.equal(value -
marketingFee) ;

s

it("Transfer with reward and without reward", async (O => {
const value = ethers.utils.parseunits("10000", 9);
await simpsonsInu.excludeFromReward(user2.address);

await simpsonsiInu.transfer(userl.address, value);
await simpsonsInu.transfer(user2.address, value);

12 Presented by Fairyproof

Simpsonsinu Token

const userlBalanceBefore await simpsonsInu.balanceOf(userl.address);

const user2BalanceBefore await simpsonsInu.balanceof(user2.address);

const uniswapV2Pair = simpsonsInu.uniswapV2Pair(Q);

await simpsonsInu.enableTrading();

await simpsonsInu.transfer(users[0].address, ethers.utils.parseunits("1000000",
D&

// make rFee

await simpsonsInu.connect(users[0]).transfer(uniswapv2pPair,
ethers.utils.parseunits("1000000", 9));

expect(await simpsonsInu.balanceof(userl.address)).to.gt(userlBalanceBefore);
expect(await
simpsonsInu.balanceof(user2.address)).to.equal(user2BalanceBefore);

s

it("Transfer with swap", async () => {
const router = await ethers.getContractAt('IUniswapV2Router02',
uniswapV2Router);
await simpsonsInu.approve(router.address, tokenTotalSupply.div(10));
await router.addLiquidityETH(
simpsonsInu.address,
tokenTotalSupply.div(10),
0,
0,
owner.address,
maxUint256,
{value: ethers.utils.parseunits("100", 18)}
s

const swapTokensAtAmount = await simpsonsInu.swapTokensAtAmount();
await simpsonsInu.transfer(userl.address, tokenTotalSupply.div(2));
await simpsonsInu.enableTrading();

await simpsonsInu.connect(userl).transfer(user2.address,
tokenTotalSupply.div(2));

const balance = await simpsonsInu.balanceof(simpsonsInu.address);

expect(balance).gt(swapTokensAtAmount) ;

const tokenBalanceofDeadBefore = await simpsonsInu.balanceof(dead);
const wethBalanceofMarket = await ethers.provider.getBalance(marketingwallet);

expect(tokenBalanceofDeadBefore).to.equal(0);
expect(wethBalanceofMarket).to.equal(0);

const uniswapV2Pair = simpsonsInu.uniswapV2pPair();
await simpsonsInu.transfer(uniswapv2Pair, 10000);

expect(await simpsonsInu.balanceof(dead)).to.gt(tokenBalanceofDeadBefore);

expect(await
ethers.provider.getBalance(marketingwallet)).to.gt(wethBalanceofMarket);

s

13 Presented by Fairyproof

Simpsonsinu Token

s
s

2. UnitTesthHardhatOutput.md

Unit test of SimpsonsInu token
Token 1init unit test
v Initial state should equal with the params of constructor
v Initial state of _isExcluded and _isExcludedFromFees
owner and OnlyOwner unit test
v Account permissions only controled by owner (39ms)
v renounceownership should emit the event
v transfer should failed before enableTrading
Approve and transferFrom unit test
v Approve should change allowance and change state
v Transfer from should change allowance
Reflection unit test
1) reflectionFromToken and tokenFromReflection
Transfer unit test
2) Transfer to zero address should be failed
Transfer zero value should be failed
Transfer token beyond balance should be failed
Transfer from address of from excludeFee and to excludeFee
Common Transfer
Transfer with reward and without reward (50ms)

NN OO NEN

Transfer with swap (127ms)

13 passing (4s)
2 failing

11.2 External Functions Check Points

1. Simpsonsinu.sol_output.md

File: contracts/Simpsonsinu.sol

(Empty fields in the table represent things that are not required or relevant)

contract: SIMPSONSINU is Context, IERC20, Ownable

Index Function Visibility StateMutability Permission Check IsUserInterface Unit Test Notes

14 Presented by Fairyproof

af://n294
af://n299
af://n301
af://n303

Simpsonsinu Token

Index Function Visibility StateMutability Permission Check IsUserlnterface Unit Test Notes
1 name() public view Yes Passed
2 symbol() public view Yes Passed
3 decimals() public view Yes Passed
4 totalSupply() public view Yes Passed
5 balanceOf(address) public view Yes Passed
6 transfer(address,uint256) public Yes Passed
7 allowance(address,address) public view Yes Passed
8 approve(address,uint256) public Yes Passed
9 transferFrom(address,address,uint256) public Yes Passed
10 increaseAllowance(address,uint256) public Yes Passed
1 decreaseAllowance(address,uint256) public Yes Passed
12 isExcludedFromReward(address) public view Yes Passed
13 totalReflectionDistributed() public view Yes Passed
14 reflectionFromToken(uint256,bool) public view Yes
15 tokenFromReflection(uint256) public view Yes Passed
16 excludeFromReward(address) public onlyOwner Passed
17 receive() external payable Yes Passed
18 isExcludedFromFee(address) public view Yes Passed
19 enableTrading() external onlyOwner Passed
20 excludeFromFees(address,bool) external onlyOwner Passed
21 owner() public view Yes Passed
22 renounceOwnership() public onlyOwner Passed

15 Presented by Fairyproof

FAIRYPROOF

https://medium.com/@FairyproofT
https://twitter.com/FairyproofT
https://www.linkedin.com/company/fairyproof-tech
https://t.me/Fairyproof_tech

Reddit: https://www.reddit.com/user/FairyproofTech

0065086

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to SimpsonsInu
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08. List of issues by severity
	09. Issue descriptions
	10. Recommendations to enhance the overall security
	11. Appendices
	11.1 Unit Test
	1. SimpsonsInu.t.js
	2. UnitTesthHardhatOutput.md

	11.2 External Functions Check Points
	1. SimpsonsInu.sol_output.md
	File: contracts/SimpsonsInu.sol

