@ FAIRYPROOF

Shitcoin Token

AUDIT REPORT

Version 1.0.0
Serial No. 2024041700012023
Presented by Fairyproof

April 17, 2024

www.fairyproof.com

Shitcoin Token

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the SHIT
Token Issuance project.

Audit Start Time:

April 17, 2024

Audit End Time:

April 17, 2024

Audited Source File's Address:

https://bscscan.com/token/0x567351E802F52cA60b2aC9D61d5B538e9582e78d#code

The goal of this audit is to review SHIT's solidity implementation for its Token Issuance function,
study potential security vulnerabilities, its general design and architecture, and uncover bugs that
could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the SHIT team
for specified versions. Whenever the code, software, materials, settings, environment etc is
changed, the comments of this audit will no longer apply.

— Disclaimer

Note that as of the date of publishing, the contents of this report reflect the current understanding
of known security patterns and state of the art regarding system security. You agree that your
access and/or use, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

Presented by Fairyproof

af://n2
https://bscscan.com/token/0x567351E802F52cA60b2aC9D61d5B538e9582e78d#code
af://n16

Shitcoin Token
We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology

The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:
1. Code Review, Including:
e Project Diagnosis

Understanding the size, scope and functionality of your project's source code based on the
specifications, sources, and instructions provided to Fairyproof.

e Manual Code Review
Reading your source code line-by-line to identify potential vulnerabilities.
e Specification Comparison

Determining whether your project's code successfully and efficiently accomplishes or executes its
functions according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:
e Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or
executed when test cases are run.

e Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to
execute its functions.

3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest
established industry and academic practices, recommendations, and research.

Presented by Fairyproof

af://n24
af://n58

Shitcoin Token
— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,

if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

— Documentation

For this audit, we used the following source(s) of truth about how the token issuance function
should work:

Source Code:
https://bscscan.com/token/0x567351E802F52cA60b2aC9D61d5B538e9582e78d#code

These were considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the SHIT team or reported an issue.

— Comments from Auditor

Serial Number Auditor Audit Time Result
Fairyproof Securit Apr 17, 2024 - Apr 17,
2024041700012023 /P / Y P
Team 2024
@ o critical © Al Resolved

@ 0 High © All Resolved

0 =
Total Findings 0 Medium © All Resolved
(B 0 Low ® All Resalved
0 Info @ All Resalved

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, no issues were uncovered.

02. About Fairyproof

Presented by Fairyproof

af://n58
af://n61
https://bscscan.com/token/0x567351E802F52cA60b2aC9D61d5B538e9582e78d#code
af://n66
af://n86

Shitcoin Token

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

03. Introduction to SHIT

SHIT(Shitcoin) is a decentralized crypto token based on the Real Life story of its creator Hiroshi
Nakamoto. He named it SHIT because after years of hard work he saw shit all over his life!

SHIT was deployed on BNB Chain. Shitcoin will be the community driven Meme Coin. People like it
not only because of getting rich but also because of its Hope oriented concept. Hope For The
Better Future In The Decentralized Free World.

The above description is quoted from relevant documents of SHIT.

04. Major functions of audited code

The audited code mainly implements a token issuance function. Here are the details:
e Blockchain: BNB Chain
e Token Standard: BEP20
e Token Address: 0x567351E802F52cA60b2aC9D61d5B538e9582e78d
e Token Name: Shitcoin
e Token Symbol: Shit
e Decimals: 18
e Current Supply: 21,000,000,000,000
e Max Supply: 21,000,000,000,000

Note:

The owner of the contract has been transferred to the zero address, so although the token is
designed with an mint function, it can not be called by anyone.

05. Coverage of issues

Presented by Fairyproof

https://www.fairyproof.com/
af://n91
af://n97
af://n123

Shitcoin Token

The issues that the Fairyproof team covered when conducting the audit include but are not limited

to the following ones:

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

Access Control

Admin Rights

Arithmetic Precision

Code Improvement
Contract Upgrade/Migration
Delete Trap

Design Vulnerability

DoS Attack

EOA Call Trap

Fake Deposit

Function Visibility

Gas Consumption
Implementation Vulnerability
Inappropriate Callback Function
Injection Attack

Integer Overflow/Underflow
IsContract Trap

Miner's Advantage

Misc

Price Manipulation

Proxy selector clashing
Pseudo Random Number
Re-entrancy Attack

Replay Attack

Rollback Attack

Shadow Variable

Slot Conflict

Token Issuance

Tx.origin Authentication

Uninitialized Storage Pointer

5

Presented by Fairyproof

af://n190

Shitcoin Token
severity issues need to be fixed as soon as possible.

@ severity issues will probably bring problems and should be fixed.
Medium severity issues could potentially bring problems and should eventually be fixed.

severity issues are minor details and warnings that can remain unfixed but would be
better fixed at some point in the future.

[l g Eia I8 is not an issue or risk but a suggestion for code improvement.

07. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks
related to the following functions or areas.

- Function Implementation

We checked whether or not the functions were correctly implemented.
We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control

We checked each of the functions that could modify a state, especially those functions that could
only be accessed by owner or administrator
We didn't find issues or risks in these functions or areas at the time of writing.

- Token Issuance & Transfer

We examined token issuance and transfers for situations that could harm the interests of holders.
We didn't find issues or risks in these functions or areas at the time of writing.

- State Update

We checked some key state variables which should only be set at initialization.
We didn't find issues or risks in these functions or areas at the time of writing.

6
Presented by Fairyproof

af://n204
af://n208
af://n211
af://n214
af://n217

Shitcoin Token

- Asset Security

We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous

We checked the code for optimization and robustness.
We didn't find issues or risks in these functions or areas at the time of writing.

08. issues by severity

- N/A

09. Issue descriptions

- N/A

10. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

- N/A

Presented by Fairyproof

af://n220
af://n223
af://n227
af://n229
af://n232
af://n234
af://n237
af://n241
af://n244

Shitcoin Token

11. Appendices
11.1 Unit Test

1. Shit.t.js

const {
loadFixture,
} = require("@nomicfoundation/hardhat-toolbox/network-helpers");
const { expect } = require('"chai");
const { ethers } = require("hardhat");

describe("shitcoin Token unit Test", function () {
const config = {
Mintable:true,
Burnable:false,
Pausable:false,
Ownable:true
}
const meta = {
contractName: "BEP20Token",
tokenName:'"shitcoin",
tokenSymbol:"shit",
TokenDecimals:18,
initSupply: ethers.parseEther("21000000000000")

async function deployTokenFixture() {
const [owner, alice,bob,...users] = await ethers.getSigners(Q);
const StandardToken = await ethers.getContractFactory(meta.contractName);
const instance = await StandardToken.deploy();

check_config(instance);
return {owner,alice,bob,users,instance};

function check_config(instance) {
let functions = instance.interface.fragments
.filter(item => item.type === "function")
.map(item => item.name);

let mint_flag = functions.includes("mint");
if(config.Mintable !== mint_flag) {
throw("Invalid Mintable config");

let burn_flag = functions.includes("burn™) &&
functions.includes("burnFrom");
if(config.Burnable !== burn_flag) {

8
Presented by Fairyproof

af://n244
af://n246
af://n248

Shitcoin Token
throw("Invalid Burnable config");

Tet owner_flag = functions.includes("owner™)
&& functions.includes("renounceownership")
&& functions.includes("transferownership");

if(config.ownable !== owner_flag) {
throw("Invalid ownable config");

let pause_flag = functions.includes("pause™)
&& functions.includes("unpause")
&& functions.includes("paused");
if(config.Pausable !== pause_flag) {
throw("Invalid Pausable config");

if(config.Pausable & & !config.ownable) {
throw("Please check the calling permission of Pausable");

if(config.Mintable & !config.ownable) {
throw("Please check the calling permission of Mintable");

function convert(num) {
return ethers.getBigInt(num);

describe("Metadata unit Test", function () {
it("Metadata should be the same as expected", async function() {
const {instance,owner} = await ToadFixture(deployTokenFixture);
expect(await instance.name()).eq(meta.tokenName, "TokenName does not
match");
expect(await instance.symbol()).eq(meta.tokensymbol, "TokenSymbol does
not match");
expect(await
instance.decimals()) .eq(meta.TokenDecimals, "TokenDecimals does not match");
expect(await
instance.balanceof(owner.address)).eq(meta.initSupply, "InitSupply does not
match");
expect(await instance.totalsupply()).eq(meta.initSupply,"InitSupply
does not match'™);
expect(await instance.getowner()).eq(owner.address);
1
B)E

describe("Transfer unit test", function () {
it("Token transfer should emit event and change balance", async
function() {
const {instance,owner,alice,bob} = await
loadFixture(deployTokenFixture);
await expect(instance.transfer(alice.address,1000)).to.be.emit(

9

instance,"Transfer"

Presented by Fairyproof

Shitcoin Token

) .withArgs(owner.address,alice.address,1000);

expect(await instance.balanceof(alice.address)).eq(1000,"Balance of
alice does not match");

expect(await instance.balanceof(owner.address)).eq(meta.initSupply -
convert(1000),"Balance of owner does not match");

expect(await instance.totalSupply()).eq(meta.initSupply,"InitSupply
does not match™);

await instance.connect(alice).transfer(bob.address,400);

expect(await instance.balanceof(alice.address)).eq(600,"Balance of
alice does not match while transferring to bob");

expect(await instance.balanceof(bob.address)).eq(400,"Balance of bob
does not match");

s

it("should be failed if sender doesn’t have enough tokens", async () => {
const {instance,alice} = await ToadFixture(deployTokenFixture);
await expect(instance.transfer(alice.address,meta.initSupply +

convert(l))).to.be.revertedwith(
"BEP20: transfer amount exceeds balance"

)3

1)

s

describe("Approve unit test", function (O {
it("Approve should change state and emit event", async () => {
const {instance,alice,bob} = await loadFixture(deployTokenFixture);
expect(await
instance.alTlowance(alice.address,bob.address)).eq(0, " "Allowance0 does not match™);

awalt
expect(instance.connect(alice).approve(bob.address,10000)).to.be.emit(
instance, "Approval"
) .withArgs(alice.address,bob.address,10000);
expect(await
instance.allowance(alice.address,bob.address)).eq(10000,"Allowancel does not
match");

await
expect(instance.connect(alice).increaseAllowance(bob.address,2000)).to.be.emit(
instance, "Approval"
) .withArgs(alice.address,bob.address,12000);
expect(await
instance.allowance(alice.address,bob.address)).eq(12000,"Allowance2 does not
match");

await
expect(instance.connect(alice).decreaseAllowance(bob.address,3000)).to.be.emit(
instance, "Approval"
) .withArgs(alice.address,bob.address,9000);
expect(await
instance.allowance(alice.address,bob.address)) .eq(9000,"ATTowance3 does not
match");

s
s

10
Presented by Fairyproof

Shitcoin Token
describe("TransferFrom unit test", function () {
it("Token transferFrom should emit event and change state", async

function() {

const {instance,owner,alice} = await ToadFixture(deployTokenFixture);

const amount = 1000;

await instance.approve(alice.address,amount * 10);

await
expect(instance.connect(alice).transferFrom(owner.address,alice.address,amount)).
to.be.emit(

instance,"Transfer"
) .withArgs(owner.address,alice.address,amount);

expect(await instance.balanceof(alice.address)).eq(amount,"Balance of
alice does not match");

expect(await instance.balanceof(owner.address)).eq(meta.initSupply -
convert(amount),"Balance of owner does not match");

expect(await instance.totalSupply()).eq(meta.initSupply, "InitSupply
does not match"™);

expect(await
instance.allowance(owner.address,alice.address)).eq(amount * 9,"ATlowance does
not match");

s

it("Maximum approval should change while transferFrom", async () => {

const {instance,owner,alice} = await ToadFixture(deployTokenFixture);

const amount = 1000;

await instance.approve(alice.address,ethers.MaxUint256);

await
instance.connect(alice).transferFrom(owner.address,alice.address,amount);

expect(await
instance.allowance(owner.address,alice.address)).eq(ethers.Maxuint256 -
ethers.getBigInt(1000),"Allowance does not match");

b;
it("should be failed if sender doesn't have enough approval", async (O =>

const {instance,owner,alice} = await ToadFixture(deployTokenFixture);

const amount = 1000;

await instance.approve(alice.address,amount - 1);

await
expect(instance.connect(alice).transferFrom(owner.address,alice.address,amount)).
to.be.revertedwith(

"BEP20: transfer amount exceeds allowance"
);
FDE
I3 H

describe("Burnable unit test", function() {
if(lconfig.Burnable) {
return;

it("Burn should change state and emit event", async () => {
const {instance,owner,alice} = await ToadFixture(deployTokenFixture);
await instance.transfer(alice.address,10000);
11
Presented by Fairyproof

Shitcoin Token
await expect(instance.connect(alice).burn(4000)).to.emit(
instance, "Transfer"

) .withArgs(alice.address,ethers.zeroAddress,4000);

expect(await instance.balanceof(alice.address)).eq(6000,"Balance of
alice does not match");

expect(await instance.totalSupply()).eq(meta.initSupply -
convert(4000),"InitSupply does not match");

s

it("BurnFrom should change allowance", async () => {

const {instance,owner,alice} = await loadFixture(deployTokenFixture);

const amount = 1000;

await instance.approve(alice.address,amount * 10);

await
expect(instance.connect(alice).burnFrom(owner.address,amount)).to.be.emit(

instance, "Transfer"

) .withArgs(owner.address,ethers.zeroAddress,amount);

expect(await instance.balanceOof(owner.address)).eq(meta.initSupply -
convert(amount),"Balance of owner does not match");

expect(await instance.totalsupply()).eq(meta.initSupply -
convert(amount),"InitSupply does not match");

expect(await
instance.allowance(owner.address,alice.address)).eq(amount * 9,"AlTowance does
not match");

s
it("should be failed if burner doesn’t have enough approval", async () =>

const {instance,owner,alice} = await loadFixture(deployTokenFixture);

const amount = 1000;

await instance.approve(alice.address,amount - 1);

await
expect(instance.connect(alice).burnFrom(owner.address,amount)).to.be.revertedwith
(

"BEP20: insufficient allowance"
)Y
g

it("Maximum approval should not change while BurnFrom", async () => {
const {instance,owner,alice} = await ToadFixture(deployTokenFixture);
const amount = 1000;
await instance.approve(alice.address,ethers.MaxUint256);
await instance.connect(alice).burnFrom(owner.address,amount);
expect(await
instance.alTowance(owner.address,alice.address)).eq(ethers.Maxuint256, " "Allowance
does not match'™);
1
B)E

describe("ownable unit test", function() {
if(!config.ownable) {
return;

it("Renounce owner should change state and emit event", async () => {
const {1nstance,owner,a11ceﬁé= await loadFixture(deployTokenFixture);

Presented by Fairyproof

Shitcoin Token
expect(await instance.owner()).eq(owner.address,"initial owner does
not match");

await expect(instance.renounceownership()).to.be.emit(
instance, "ownershipTransferred"
) .withArgs(owner.address,ethers.zeroAddress);

expect(await instance.owner()).eq(ethers.zeroAddress, "owner should be
zero");

s

it("Change owner should change state and emit event", async () => {
const {instance,owner,alice} = await ToadFixture(deployTokenFixture);
expect(await instance.owner()).eq(owner.address,"initial owner does
not match");

await expect(instance.transferownership(alice.address)).to.be.emit(
instance, "ownershipTransferred"
) .withArgs(owner.address,alice.address);

expect(await instance.owner()).eq(alice.address,"owner does not
match");
b;

it("only old owner can change or renounce owner", async () => {
const {instance,bob,alice} = await loadFixture(deployTokenFixture);
await
expect(instance.connect(alice).transferownership(bob.address)).to.be.revertedwith
(
"Oownable: caller is not the owner"
)3
await
expect(instance.connect(alice).renounceownership()).to.be.revertedwith(
"ownable: caller is not the owner"
)3
1)
I3 H

describe("Mintable unit test", function() {
if(lconfig.Mintable) {
return;

it("only owner can mint token", async (O => {
const {instance,bob,alice} = await loadFixture(deployTokenFixture);
await expect(instance.connect(alice).mint(10000)).to.be.revertedwith(
"ownabTle: caller is not the owner"
)3
1

it("mint token can change supply and balance", async () => {
const {instance,alice,owner} = await ToadFixture(deployTokenFixture);
await expect(instance.mint(10000)).to.be.emit(
instance, "Transfer"
).withArgs(ethers.ZeroAddreﬁE;owner.address,lOOOO);

Presented by Fairyproof

Shitcoin Token
expect(await instance.balanceOof(owner.address)).eq(meta.initSupply +
convert(10000),"Balance of alice does not match");
expect(await instance.totalsupply()).eq(meta.initSupply +
convert(10000),"TotalSupply does not match");
s
1)

describe("Pausable unit test", function() {
if(!lconfig.Pausable) {
return;

it("only owner can pause transfer", async () => {
const {instance,alice} = await loadFixture(deployTokenFixture);
await expect(instance.connect(alice).pause()).to.be.revertedwith(
"ownable: caller is not the owner"

D&

await expect(instance.connect(alice).unpause()).to.be.revertedwith(
"Oownable: caller is not the owner"
)3
B

it("Pause and unpause should change state and emit event", async () => {
const {instance,owner} = await ToadFixture(deployTokenFixture);
expect(await instance.paused()).to.be.false;

await expect(instance.pause()).to.be.emit(
instance, "Paused"
) .withArgs(owner.address) ;

expect(await instance.paused()).to.be.true;
await expect(instance.pause()).to.be.revertedwith("Pausable:

paused");

await expect(instance.unpause()).to.be.emit(

instance, "Unpaused"

) .withArgs(owner.address);

expect(await instance.paused()).to.be.false;

await expect(instance.unpause()).to.be.revertedwith("Pausable: not
paused");

b;

it("TokenTransfer should be failed while paused”, async () => {
const {instance,owner,alice} = await ToadFixture(deployTokenFixture);
await instance.pause();

await
expect(instance.transfer(alice.address,10000)).to.be.revertedwith(
"BEP20Pausable: token transfer while paused"

DE

await instance.approve(alice.address,100000);
await
rom(owner.address,alice.address,1000))

F
14

expect(instance.connect(alice).transfer

Presented by Fairyproof

Shitcoin Token
.to.be.revertedwith("BEP20Pausable: token transfer while
paused");

)8
s

58

2. UnitTestOutput

Shitcoin Token uUnit Test
Metadata unit Test
v Metadata should be the same as expected (2122ms)
Transfer unit test
v Token transfer should emit event and change balance (57ms)
v Should be failed if sender doesn’t have enough tokens (67ms)
Approve unit test
v Approve should change state and emit event (54ms)
TransferFrom unit test
v Token transferFrom should emit event and change state (38ms)
v Maximum approval should change while transferFrom
v Should be failed if sender doesn't have enough approval
Ownable unit test
v Renounce owner should change state and emit event
v Change owner should change state and emit event
v only old owner can change or renounce owner
Mintable unit test
v Only owner can mint token
v mint token can change supply and balance

12 passing (3s)

11.2 External Functions Check Points

1. Shitcoin_output.md

File: contracts/Shitcoin.sol

contract: BEP20Token is Context, IBEP20, Ownable

(Empty fields in the table represent things that are not required or relevant)

" - e Param Unit .
Index Function StateMutability Modifier IsUserInterface Miscellaneous
Check Test

1 getOwner() view Passed

15
Presented by Fairyproof

af://n252
af://n257
af://n259
af://n261

Index

Function StateMutability Modifier ZE::T
decimals() view

symbol() view

name() view

totalSupply() view

balanceOf(address) view

transfer(address,uint256)

allowance(address,address) view

approve(address,uint256)

transferFrom(address,address,uint256)
increaseAllowance(address,uint256)

decreaseAllowance(address,uint256)

mint(uint256) onlyowner
owner() view

renounceOwnership() onlyowner
transferOwnership(address) onlyowner

16

IsUserInterface

Yes

Yes

Yes

Yes

Yes

Shitcoin Token

Unit
Test

Miscellaneous

Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

Passed

Presented by Fairyproof

FAIRYPROOF

https://medium.com/@FairyproofT
https://twitter.com/FairyproofT
https://www.linkedin.com/company/fairyproof-tech
https://t.me/Fairyproof_tech

Reddit: https://www.reddit.com/user/FairyproofTech

0065086

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to SHIT
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08. issues by severity
	- N/A

	09. Issue descriptions
	- N/A

	10. Recommendations to enhance the overall security
	- N/A

	11. Appendices
	11.1 Unit Test
	1. Shit.t.js
	2. UnitTestOutput

	11.2 External Functions Check Points
	1. Shitcoin_output.md
	File: contracts/Shitcoin.sol

