
Saffron

Version 1.0.0

Serial No. 2021080800022025

Presented by Fairyproof

August 8, 2021

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Saffron
project, at the request of the Saffron team.

Audit Start Time:

August 6, 2021

Audit End Time:

August 8, 2021

Audited Code's Github Repository:

https://github.com/saffron-finance/saffron-staking-v2

Audited Code's Github Commit Number When Audit Started:

48cdb2d9683efd6632bf93b34e6cdfb4ec3f15ba

Audited Code's Github Commit Number When Audit Ended:

f4fecd0d59ed0cc0758ea9083947e39a3cf7f27c

Audited Source Files:

The calculated SHA-256 values for the audited files when the audit was done are as follows:

The source files audited include all the files with the extension "sol" as follows:

The goal of this audit is to review Saffron’s solidity implementation for its staking application, study
potential security vulnerabilities, its general design and architecture, and uncover bugs that could
compromise the software in production.

SFIRewarder.sol:

0x40a52691411efbdb78c1f350cfd17adb0ec42bfe1fa8dd7988539fe2beeeca6a

SaffronStakingV2.sol:

0xe42aef23397e0ec643f1085e08217aa165f06e8105850088acee804fe6c2cff7

interface/ISFIRewarder.sol:

0x800965c0fc4ea7ed9a05b377f3c407e2b8e3eb256f7ee127c31e793ee97b04a9

contracts/

├── SFIRewarder.sol

├── SaffronStakingV2.sol

└── interface

 └── ISFIRewarder.sol

Saffron

Presented by Fairyproof1

Fa
ir
yp
ro
of

af://n20
https://github.com/saffron-finance/saffron-staking-v2

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its quality
as a whole.

This audit only applies to the specified code, software or any materials supplied by the Saffron
team for specified versions. Whenever the code, software, materials, settings, enviroment etc is
changed, the comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding
of known security patterns and state of the art regarding system security. You agree that your
access and/or use, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

Saffron

Presented by Fairyproof2

Fa
ir
yp
ro
of

af://n45
af://n53

Passed

Serial Number Auditor Audit Time Result

2021080800022025 Fairyproof Security Team 2021.08.06 - 2021.08.08

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure
we understand the size, scope, and functionality of the project's source code.
ii. Manual review of code, which is the process of reading source code line-by-line in an
attempt to identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what
the specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are
actually covering the code and how much code is exercised when we run the test cases.
ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part
of a program to execute.

3. Best practices review, which is a review of the source code to improve maintainability,
security, and control based on the established industry and academic practices,
recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided at
the beginning of the report.

— Documentation
For this audit, we used the following source of truth about how Saffron's staking application should
work:

https://github.com/saffron-finance/saffron-staking-v2#saffron-staking

These was considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the Saffron team or reported an issue.

— Comments from Auditee

Saffron

Presented by Fairyproof3

Fa
ir
yp
ro
of

af://n64
af://n67
https://github.com/saffron-finance/saffron-staking-v2#saffron-staking
af://n73

No vulnerabilities with critical, high, medium or low-severity were found in the above source code.

The comments and discovery only apply to the code deployed and run on BSC, HECO, OKExChain
and ETH blockchain.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security
audits for organizations. Fairyproof has developed industry security standards for designing and
deploying blockchain applications.

03. Introduction to Saffron Finance

Saffron is an asset collateralization platform where liquidity providers have access to dynamic
exposure by selecting customized risk and return profiles.

04. Major functions of audited code

The audited code implements Saffron's staking application which mainly includes the following
functions:

Saffron

Presented by Fairyproof4

Fa
ir
yp
ro
of

af://n80
https://www.fairyproof.com/
af://n86
af://n92

Staking: users stake specified ERC-20 tokens and will get rewards in the ERC-20 token
specified by Saffron before the reward mechanism ends
Rewards are kept in SFIRewarder : rewards are kept in SFIRewarder . The staking contract
distributes rewards by calling SFIRewarder 's interface.

Admin's access control: parameters that specify the reward mechanism can be modified by
the Admin

Note:

The third-party libraries the project relies on were not covered by this audit.
The reward token's contract was not covered by this audit.

05. Key points in audit

During the audit Fairyproof worked closely with the Saffron team and reviewed possible
vulnerabilities in the staking functions and here is a finding:

- SaffronStaking.sol

No Need to Require uint256 >=0

Both the constructor() function in ine 64 of SaffronStaking.sol and the

setRewardPerBlock() function in line 85 of SaffronStaking.sol have the following directive:

_sfiPerBlock is a uint256 variable, its data type ensures it is greater than 0. So this require is

unnecessary.

Recommendation:

Consider removing require(_sfiPerBlock >= 0)

Update:

The directive should be require(_sfiPerBlock > 0) . This has been fixed with commit

f4fecd0d59ed0cc0758ea9083947e39a3cf7f27c .

06. Coverage of issues

require(_sfiPerBlock >= 0, "invalid sfiPerBlock");

Saffron

Presented by Fairyproof5

Fa
ir
yp
ro
of

af://n111
af://n115
af://n116
af://n127

The issues that the Fairyproof team covered when conducting the audit include but are not limited
to the following ones:

Re-entrancy Attack
DDos Attack
Integer Overflow
Function Visibility
Logic Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Shadow Variable
Design Vulnerability
Token Issurance
Asset Security
Access Control

07. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

08. List of issues by severity

A. Critical

Saffron

Presented by Fairyproof6

Fa
ir
yp
ro
of

af://n159
af://n173
af://n175

- N/A

B. High

- N/A

C. Medium

- N/A

D. Low

- N/A

09. List of issues by source file

- N/A

10. Issue descriptions

- N/A

11. Recommendations to enhance the
overall security

Saffron

Presented by Fairyproof7

Fa
ir
yp
ro
of

af://n176
af://n178
af://n179
af://n181
af://n182
af://n184
af://n185
af://n190
af://n192
af://n197
af://n199
af://n203

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

- N/A

Saffron

Presented by Fairyproof8

Fa
ir
yp
ro
of

af://n206

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditee

	02. About Fairyproof
	03. Introduction to Saffron Finance
	04. Major functions of audited code
	05. Key points in audit
	- SaffronStaking.sol
	No Need to Require uint256 >=0

	06. Coverage of issues
	07. Severity level reference
	08. List of issues by severity
	A. Critical
	- N/A

	B. High
	- N/A

	C. Medium
	- N/A

	D. Low
	- N/A

	09. List of issues by source file
	- N/A

	10. Issue descriptions
	- N/A

	11. Recommendations to enhance the overall security
	- N/A

