
Version 1.0.0

Serial No.: 2022011700022019

Presented by Fairyproof

January 17, 2022

1

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Roco
project.

Audit Start Time:

Jan 14, 2022

Audit End Time:

Jan 17, 2022

Audited Source Files:

The calculated SHA-256 values for the audited files when the audit was done are as follows:

The goal of this audit is to review Roco’s solidity implementation for its token issurance and
staking functions, study potential security vulnerabilities, its general design and architecture, and
uncover bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Roco team
for specified versions. Whenever the code, software, materials, settings, enviroment etc is
changed, the comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current
understanding of known security patterns and state of the art regarding system security. You
agree that your access and/or use, including but not limited to any associated services, products,
protocols, platforms, content, and materials, will be at your sole risk.

RocoToken.sol :

0x862858cd27fe08bf0ded4ca24d23bde7be096ad17ebde6ac598540c8b5bb7a2d

RocoMultiStake.sol:

0xfd4d5a17ca72220e81468a5465b7cdf8ff5a3ea265350ad02cb3c7618643edeb

2

af://n15
af://n32

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— The Roco Team's Consent/Acknowledgement:
The audited materials of the project including but not limited to the documents, home site, source
code, etc are all developed, deployed, managed, and maintained outside Mainland CHINA.

The members of the team, the foundation, and all the organizations that participate in the
audited project are not Mainland Chinese residents.

The audited project doesn’t provide services or products for Mainland Chinese residents.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure
we understand the size, scope, and functionality of the project's source code.
ii. Manual review of code, which is the process of reading source code line-by-line in an
attempt to identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what
the specifications, sources, and instructions provided to Fairyproof describe.

3

af://n40
af://n45

Serial Number Auditor Audit Time Result

2022011700022019
Fairyproof Security
Team

January 14, 2022 - January 17,
2022

Low
Risk

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are
actually covering the code and how much code is exercised when we run the test cases.
ii. Symbolic execution, which is analyzing a program to determine what inputs cause each
part of a program to execute.

3. Best practices review, which is a review of the source code to improve maintainability,
security, and control based on the established industry and academic practices,
recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

— Documentation
For this audit, we used the following sources of truth about how the token issurance and staking
functions should work:

https://roco.finance/

These were considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the Roco team or reported an issue.

— Comments from Auditor

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, 3 risks of medium-severity and 2 risk of low-severity were discovered, and 1
neutral suggestion was raised. The Roco team confirmed 2 risks of low-severity, fixed 3 risks of
medium-severity, and ignored 1 neutral suggestion.

02. About Fairyproof

4

af://n56
af://n59
https://roco.finance/
af://n65
af://n83

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

03. Major functions of audited code

The audited code mainly implements the following functions:

- Issurance of ROCO
ROCO is an ERC-20 token

Blockchain: Avalanche

Token Address: 0xb2a85C5ECea99187A977aC34303b80AcbDdFa208

Token Name: ROCO

Token Symbol: ROCO

Token Precision: 18

Max Supply: 100,000,000

No transaction charge: transaction charge is zero and cannot be modified

No pyramid mechanism

- Staking
RocoMultiStake.sol is a staking contract which has the following functions:

Single token staking

Fees will be charged when users stake or withdraw tokens

For a user who stakes for less than 1 year, the quantity of the reward token he/she gets
cannot exceed two times of the quantity of his/her staking token. For a user who stakes for
more than 1 year, the quantity of the reward token he/she gets cannot exceed three times of
the quantity of his/her staking token.

Pausing staking, pausing withdrawal of deposited tokens and pausing withdrawal of reward
tokens

Note:

Tokens that have fee charges in transactions and tokens that are scalable shouldn't be
allowed for staking

5

https://www.fairyproof.com/
af://n89
af://n93
af://n113
af://n130

- Admin Rights
There are two kinds of admins: admin in charge of token issurance and admin in charge of staking

Admin Rights for Token Issurance:

Locking/Unlocking token distribution

Admin Rights for Staking:

Pausing/Resuming token staking

Withdrawing rewards

Setting reward parameters

Setting a staking operation's min/max quantity, and the max quantity of a liquidity pool

Setting fees for staking and withdrawing staking fees

04. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not
limited to the following ones:

Re-entrancy Attack
Replay Attack
Reordering Attack
Miner's Advantage
Rollback Attack
DDos Attack
Transaction Ordering Attack
Race Condition
Access Control
Integer Overflow/Underflow
Timestamp Attack
Gas Consumption
Inappropriate Callback Function
Function Visibility
Implementation Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Fake Deposit
Shadow Variable
Design Vulnerability
Token Issurance
Admin Rights
Inappropriate Proxy Design
Inappropriate Use of Slots

6

af://n130
af://n152

Asset Security
Contract Upgrade/Migration
Code Improvement
Misc

05. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

Neutral is not an issue or risk but a suggestion for code improvement.

06. List of issues by severity

7

af://n217
af://n233

Index Title Issue/Risk Severity Status

FP-1
Inappropriate Handling of

Admin Rights
Implementation

Vulnerability
Low Confirmed

FP-2
Missing Constraints for

BalanceTemp
Admin Rights Low Confirmed

FP-3
Missing Constraints for

Parameter Settings
Admin Rights Medium Fixed

FP-4
Improper Design of

Emergency Withdrawal
Admin Rights Medium Fixed

FP-5
Missing Constraint for

Parameter Setting
Implementation

Vulnerability
Medium Fixed

FP-6
Misleading Information in

Require
Code Improvement Neutral Ignored

07. Issue descriptions

[FP-1] [Low] Inappropriate Handling of Admin Rights
Risk Severity: Low

Issue/Risk: Implementation Vulnerability

Description:

With regard to admin rights, in the RocoToken.sol and RocoMultiStake.sol files, the lock
and unlock functions didn't handle the admin rights correctly..

Recommendation:

Consider removing the lock and unlock functions.

Status:

This bug in the RocoMultiStake.sol file was fixed but the one in the RocoToken.sol file cannot
be fixed since the contract has been deployed.

[FP-2] [Low] Missing Constraints for BalanceTemp
Risk Severity: Low

Issue/Risk: Admin Rights

Description:

8

af://n282
af://n284
af://n431

The setBalanceTemp function defined in the RocoMultiStake.sol file was used to set
BalanceTemp . If the variable was improperly set, it would cause issues in staking, unstaking,
calculation of APR etc.

Recommendation:

Consider calling the function to set BalanceTemp with great care.

Status:

It has been confirmed by the Roco team.

[FP-3] [Medium] Missing Constraints for Parameter
Settings

Risk Severity: Medium

Issue/Risk: Admin Rights

Description:

The startTime , endTime , FeeRate defined in the RocoMultiStake.sol file all needed
constraints. startTime should be less than endTime and FeeRate should be in 0~10.

Recommendation:

Consider adding constraints for these variables.

Status:

It has been fixed by the Roco team.

[FP-4] [Medium] Improper Design of Emergency
Withdrawal

Risk Severity: Medium

Issue/Risk: Admin Rights

Description:

The WithdrawEmergencyUser function defined in the RocoMultiStake.sol file was used to
withdraw staked tokens by users in emergency. This function had a variable to enable/disable this
withdrawal operation. If the variable wasn't correctly set in emergent conditions, users' staked
tokens would never be withdrawn.

Recommendation:

Consider removing the variable.

Status:

It has been fixed by the Roco team.

9

af://n304
af://n314
af://n464

[FP-5] [Medium] Missing Constraint for Parameter
Setting

Risk Severity: Medium

Issue/Risk: Implementation Vulnerability

Description:

The setPerRocoSecond function defined in RocoMultiStake.sol was used to set the value of
RocoPerSecond . If a user hadn't claimed his/her reward and RocoPerSecond was set to a lower
value, the number of reward tokens would be smaller than what the user should be able to claim.

Recommendation:

Consider adding a require to ensure every time when setPerRocoSecond is called the new value
of RocoPerSecond is greater than the old value.

Status:

It has been fixed by the Roco team.

[FP-6] [Neutral] Misleading Information in Require
Risk Severity: Neutral

Issue/Risk: Code Improvement

Description:

The information defined in the require statement in line 410 of the RocoToken.sol file was
misleading.

Recommendation:

Consider changing the information to "Account is already included".

Status:

It has been confirmed by the Roco team.

08. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

- Improvement on GAS Consumption
10

af://n464
af://n334
af://n346
af://n350

The variable _tTotal stands for the max supply and it is a constant. Using constant to define a
variable saves gas consumption.

Recommendation:

Consider using constant to define _tTotal .

Status:

It has been confirmed by the Roco team.

- Adding Events
When a liquidity pool reaches its max capacity or its status has any change, no events are emitted
to announce this change

Recommendation:

Consider adding events for status change.

Status:

It has been confirmed by the Roco team.

- Using Multi-sig Wallet to Set Reward Parameters
The reward parameters in the RocoMultiStake.sol contract were set by owner . This right is
centralized.

Recommendation:

Consider using a multi-sig wallet to set reward parameters.

Status:

It has been confirmed by the Roco team.

- Don't Stake Or Reward Tokens That Have Callback
Functions

This is to prevent re-entrancy attacks.

11

af://n357
af://n364
af://n371

	01. Introduction
	— Disclaimer
	— The Roco Team's Consent/Acknowledgement:
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Major functions of audited code
	- Issurance of ROCO
	- Staking
	- Admin Rights

	04. Coverage of issues
	05. Severity level reference
	06. List of issues by severity
	07. Issue descriptions
	[FP-1] [Low] Inappropriate Handling of Admin Rights
	[FP-2] [Low] Missing Constraints for BalanceTemp
	[FP-3] [Medium] Missing Constraints for Parameter Settings
	[FP-4] [Medium] Improper Design of Emergency Withdrawal
	[FP-5] [Medium] Missing Constraint for Parameter Setting
	[FP-6] [Neutral] Misleading Information in Require

	08. Recommendations to enhance the overall security
	- Improvement on GAS Consumption
	- Adding Events
	- Using Multi-sig Wallet to Set Reward Parameters
	- Don't Stake Or Reward Tokens That Have Callback Functions

