
Pepe Token

Version 1.0.0

Serial No. 2023082100012021

Presented by Fairyproof

August 21, 2023

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Pepe token issuance
project.

Audit Start Time:

August 21, 2023

Audit End Time:

August 21, 2023

Audited Source File's Address:

https://etherscan.io/token/0x6982508145454ce325ddbe47a25d4ec3d2311933#code

The goal of this audit is to review Pepe’s solidity implementation for its token issuance function, study
potential security vulnerabilities, its general design and architecture, and uncover bugs that could compromise
the software in production.

We make observations on specific areas of the code that present concrete problems, as well as general
observations that traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Pepe team for
specified versions. Whenever the code, software, materials, settings, environment etc is changed, the
comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding of known
security patterns and state of the art regarding system security. You agree that your access and/or use,
including but not limited to any associated services, products, protocols, platforms, content, and materials, will
be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming language, or
other programming aspects that could present security risks. If the audited source files are smart contract
files, risks or issues introduced by using data feeds from offchain sources are not extended by this review
either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further
testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with this
report, its content, and the related services and products and your use thereof, including, without limitation,
the implied warranties of merchantability, fitness for a particular purpose, and non-infringement.

Pepe Token

Presented by Fairyproof1

Fa
ir
yp
ro
of

af://n2
https://etherscan.io/token/0x6982508145454ce325ddbe47a25d4ec3d2311933#code
af://n16

We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or
offered by a third party through the product, any open source or third-party software, code, libraries,
materials, or information linked to, called by, referenced by or accessible through the report, its content, and
the related services and products, any hyperlinked websites, any websites or mobile applications appearing on
any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction
between you and any third-party providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY
ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its specifications
were implemented. The codebase was then subject to deep analysis and scrutiny, resulting in a series of
observations. The problems and their potential solutions are discussed in this document and, whenever
possible, we identify common sources for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code Review, Including:

Project Diagnosis

Understanding the size, scope and functionality of your project’s source code based on the specifications,
sources, and instructions provided to Fairyproof.

Manual Code Review

Reading your source code line-by-line to identify potential vulnerabilities.

Specification Comparison

Determining whether your project’s code successfully and efficiently accomplishes or executes its functions
according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:

Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or executed
when test cases are run.

Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to execute its
functions.

3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest established
industry and academic practices, recommendations, and research.

Pepe Token

Presented by Fairyproof2

Fa
ir
yp
ro
of

af://n24
af://n58

Serial Number Auditor Audit Time Result

2023082100012021 Fairyproof Security Team Aug 21, 2023 - Aug 21, 2023 Passed

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is assigned a
severity level based on the potential impact of the issue and recommendations to fix it, if applicable. For ease
of navigation, an index by topic and another by severity are both provided at the beginning of the report.

— Documentation
For this audit, we used the following source(s) of truth about how the token issuance function should work:

Website:https://www.pepe.vip/

Source Code: https://etherscan.io/token/0x6982508145454ce325ddbe47a25d4ec3d2311933#code

These were considered the specification, and when discrepancies arose with the actual code behavior, we
consulted with the Pepe team or reported an issue.

— Comments from Auditor

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project. During the
audit, no issues were uncovered.

02. About Fairyproof

Pepe Token

Presented by Fairyproof3

Fa
ir
yp
ro
of

af://n58
af://n61
https://www.pepe.vip/
https://etherscan.io/token/0x6982508145454ce325ddbe47a25d4ec3d2311933#code
af://n67
af://n84

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits for
organizations. Fairyproof has developed industry security standards for designing and deploying blockchain
applications.

03. Introduction to Pepe

PEPE is a deflationary memecoin launched on Ethereum. The cryptocurrency was created as a tribute to the
Pepe the Frog internet meme, created by Matt Furie, which gained popularity in the early 2000s.

The project aims to capitalize on the popularity of meme coins, like Shiba Inu and Dogecoin, and strives to
establish itself as one of the top meme-based cryptocurrencies. PEPE appeals to the cryptocurrency
community by instituting a no-tax policy, a redistributive system rewarding long-term stakers, and a burning
mechanism to maintain scarcity of the PEPE coin.

In late April to May 2023, the explosive surge of PEPE caused its market cap to reach a high of $1.6 billion at
one point, minting millionaires out of early holders and attracting a strong community of like-minded
followers. It has induced what some may dub a "memecoin season," causing other memecoins — some
launched within hours — to go on spectacular pumps and just as astounding dumps. It remains to be seen if
PEPE and other memecoins will go on to new highs, although that is certainly the hope of many bagholders.

The PEPE roadmap features three phases, where phase one includes listing on CoinMarketCap, and getting
$PEPE trending on Twitter, while phase two includes listing on centralized exchanges (CEXs) and phase three
includes “tier 1” exchange listings and what the team terms a “meme takeover.”

The above description is quoted from relevant documents of Pepe.

04. Major functions of audited code

The audited code mainly implements a token issuance function. Here are the details:

Blockchain: Ethereum
Token Standard: ERC-20
Token Address: 0x6982508145454ce325ddbe47a25d4ec3d2311933
Token Name: Pepe
Token Symbol: PEPE
Decimals: 18
Current Supply: 420,689,899,999,995
Max Supply: 420,690,000,000,000
Burnable: Yes
Blacklist: Yes

Pepe Token

Presented by Fairyproof4

Fa
ir
yp
ro
of

https://www.fairyproof.com/
af://n88
af://n94

Note:

At this point, the owner of the contract is the zero address.

05. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited to the
following ones:

Access Control
Admin Rights
Arithmetic Precision
Code Improvement
Contract Upgrade/Migration
Delete Trap
Design Vulnerability
DoS Attack
EOA Call Trap
Fake Deposit
Function Visibility
Gas Consumption
Implementation Vulnerability
Inappropriate Callback Function
Injection Attack
Integer Overflow/Underflow
IsContract Trap
Miner's Advantage
Misc
Price Manipulation
Proxy selector clashing
Pseudo Random Number
Re-entrancy Attack
Replay Attack
Rollback Attack
Shadow Variable
Slot Conflict
Token Issuance
Tx.origin Authentication
Uninitialized Storage Pointer

Pepe Token

Presented by Fairyproof5

Fa
ir
yp
ro
of

af://n125
af://n192

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at
some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

07. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks related to the
following functions or areas.

- Function Implementation
We checked whether or not the functions were correctly implemented.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control
We checked each of the functions that could modify a state, especially those functions that could only be
accessed by owner or administrator

We didn't find issues or risks in these functions or areas at the time of writing.

- Token Issuance & Transfer

Pepe Token

Presented by Fairyproof6

Fa
ir
yp
ro
of

af://n192
af://n206
af://n210
af://n213
af://n216

We examined token issuance and transfers for situations that could harm the interests of holders.

We didn't find issues or risks in these functions or areas at the time of writing.

- State Update
We checked some key state variables which should only be set at initialization.

We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security
We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous
We checked the code for optimization and robustness.

We didn't find issues or risks in these functions or areas at the time of writing.

08. issues by severity

- N/A

09. Issue descriptions

- N/A

10. Recommendations to enhance the overall
security

Pepe Token

Presented by Fairyproof7

Fa
ir
yp
ro
of

af://n219
af://n222
af://n225
af://n229
af://n231
af://n233
af://n235
af://n238

We list some recommendations in this section. They are not mandatory but will enhance the overall security of
the system if they are adopted.

- N/A

11. Appendices

11.1 Unit Test

1. PepeToken.t.js

const { expect } = require("chai");

const { ethers } = require("hardhat");

describe("PepeToken Test", function () {

 let owner, addr1, addr2, uniswapV2PairMock;

 const totalSupply = ethers.parseEther("420690000000000")

 const AddressZero = "0x00"

 async function deployToken() {

 [owner, addr1, addr2, uniswapV2PairMock] = await ethers.getSigners();

 const PepeToken = await ethers.getContractFactory("PepeToken");

 const instance = await PepeToken.deploy(totalSupply);

 return { instance };

 }

 describe("Deployment test", function () {

 it("Should set the correct metadata", async function () {

 const { instance } = await deployToken();

 // ERC20 metadata

 expect(await instance.totalSupply()).equal(totalSupply);

 expect(await instance.balanceOf(owner.address)).equal(totalSupply);

 expect(await instance.name()).equal("Pepe");

 expect(await instance.symbol()).equal("PEPE");

 expect(await instance.decimals()).equal(18);

 // PepeToken metadata

 expect(await instance.limited()).equal(false);

 expect(await instance.maxHoldingAmount()).equal(0);

 expect(await instance.minHoldingAmount()).equal(0);

 expect(await instance.uniswapV2Pair()).equal(AddressZero);

Pepe Token

Presented by Fairyproof8

Fa
ir
yp
ro
of

af://n240
af://n243
af://n245
af://n247

 });

 });

 describe("Function beforeTokenTransfer test", function () {

 it("Only owner can transfer until uniswapV2Pair is set", async function () {

 const { instance } = await deployToken();

 await expect(instance.connect(addr1).transfer(addr2.address,

1)).to.be.revertedWith("trading is not started");

 await instance.setRule(false, uniswapV2PairMock, 0, 0)

 await instance.transfer(addr1.address, 1);

 await instance.connect(addr1).transfer(addr2.address, 1);

 });

 it("Should respect maxHoldingAmount and minHoldingAmount", async () => {

 const { instance } = await deployToken();

 await instance.setRule(true, uniswapV2PairMock.address, 5000, 1000);

 await instance.transfer(uniswapV2PairMock.address, 6000)

 await expect(instance.connect(uniswapV2PairMock).transfer(addr1.address,

6000)).to.revertedWith("Forbid");

 await expect(instance.connect(uniswapV2PairMock).transfer(addr1.address,

500)).to.revertedWith("Forbid");

 await instance.connect(uniswapV2PairMock).transfer(addr1.address, 1200)

 });

 });

 describe("Transactions test", function () {

 it("Should transfer tokens between accounts", async function () {

 const { instance } = await deployToken();

 const transferAmount = 5000;

 await expect(instance.transfer(addr1.address, transferAmount))

 .be.emit(instance, "Transfer").withArgs(owner.address, addr1.address,

transferAmount);

 expect(await instance.balanceOf(addr1.address)).to.equal(transferAmount);

 });

 it("Should be failed if sender doesn’t have enough tokens", async function () {

 const { instance } = await deployToken();

 const initialOwnerBalance = await instance.balanceOf(owner.address);

 await expect(instance.connect(addr1).transfer(owner.address,

1)).to.revertedWith("ERC20: transfer amount exceeds balance");

 expect(await instance.balanceOf(owner.address)).to.equal(initialOwnerBalance);

 });

 it("Should be failed if sender transfer to zero address", async function () {

 const { instance } = await deployToken();

 const transferAmount = 5000;

 await expect(instance.transfer(AddressZero, transferAmount)).to.revertedWith("ERC20:

transfer to the zero address");

 await instance.approve(owner.address, transferAmount);

Pepe Token

Presented by Fairyproof9

Fa
ir
yp
ro
of

 await expect(instance.transferFrom(owner.address, AddressZero,

transferAmount)).to.revertedWith("ERC20: transfer to the zero address");

 });

 it("Should be successful if sender transfer to himself", async function () {

 const { instance } = await deployToken();

 const transferAmount = 5000;

 await expect(instance.transfer(owner.address, transferAmount))

 .be.emit(instance, "Transfer").withArgs(owner.address, owner.address,

transferAmount);

 await instance.approve(owner.address, transferAmount);

 await expect(instance.transferFrom(owner.address, owner.address, transferAmount))

 .be.emit(instance, "Transfer").withArgs(owner.address, owner.address,

transferAmount);

 expect(await instance.balanceOf(owner.address)).to.equal(totalSupply);

 });

 it("Should be successful if sender transfer zero amount", async function () {

 const { instance } = await deployToken();

 await expect(instance.transfer(addr1.address, 0))

 .be.emit(instance, "Transfer").withArgs(owner.address, addr1.address, 0);

 await expect(instance.transferFrom(owner.address, addr1.address, 0))

 .be.emit(instance, "Transfer").withArgs(owner.address, addr1.address, 0);

 expect(await instance.balanceOf(owner.address)).to.equal(totalSupply);

 });

 it("TransferFrom should need enough allowance", async function () {

 const { instance } = await deployToken();

 const transferAmount = 5000;

 await expect(instance.transferFrom(owner.address, addr1.address,

transferAmount)).to.revertedWith("ERC20: transfer amount exceeds allowance")

 await instance.approve(owner.address, transferAmount);

 await expect(instance.transferFrom(owner.address, addr1.address, transferAmount))

 .be.emit(instance, "Transfer").withArgs(owner.address, addr1.address,

transferAmount);

 expect(await instance.balanceOf(addr1.address)).to.equal(transferAmount);

 await instance.connect(addr1).approve(owner.address, transferAmount);

 await instance.transferFrom(addr1.address, owner.address, transferAmount)

 expect(await instance.balanceOf(addr1.address)).to.equal(0);

 });

 });

 describe("Burn test", function () {

 it("Allows users to burn their own tokens", async function () {

 const { instance } = await deployToken();

 await instance.setRule(true, uniswapV2PairMock.address, 5000, 1000);

 await instance.transfer(addr1.address, 1000);

Pepe Token

Presented by Fairyproof10

Fa
ir
yp
ro
of

 expect(await instance.balanceOf(addr1.address)).to.equal(1000);

 await instance.connect(addr1).burn(1000);

 expect(await instance.balanceOf(addr1.address)).to.equal(0);

 expect(await instance.totalSupply()).equal(totalSupply - (BigInt("1000")));

 });

 });

 describe("Allowance test", function () {

 it("Should update the allowance when approving", async function () {

 const { instance } = await deployToken();

 const approveAmount = 1000

 await expect(instance.approve(addr1.address, approveAmount))

 .to.emit(instance, "Approval").withArgs(owner.address, addr1.address,

approveAmount);

 const allowance = await instance.allowance(owner.address, addr1.address);

 expect(allowance).to.equal(approveAmount);

 // increse allowance again

 await expect(instance.increaseAllowance(addr1.address, approveAmount))

 .to.emit(instance, "Approval").withArgs(owner.address, addr1.address, approveAmount

* 2);

 expect(await instance.allowance(owner.address, addr1.address)).to.equal(approveAmount

* 2);

 // decrease allowance

 await expect(instance.decreaseAllowance(addr1.address, approveAmount))

 .to.emit(instance, "Approval").withArgs(owner.address, addr1.address,

approveAmount);

 });

 });

 describe("Ownership test", function () {

 it("Should transfer and renounce ownership correctly", async function () {

 const { instance } = await deployToken();

 expect(await instance.owner()).to.equal(owner.address);

 await instance.transferOwnership(addr1.address);

 expect(await instance.owner()).to.equal(addr1.address);

 await instance.connect(addr1).renounceOwnership();

 expect(await instance.owner()).to.equal(AddressZero);

 });

 it("Should lose ownership if the owner renounces ownership", async function () {

 const { instance } = await deployToken();

 expect(await instance.owner()).to.equal(owner.address);

 await instance.renounceOwnership();

 expect(await instance.owner()).to.equal(AddressZero);

 // lose ownership

 await expect(instance.blacklist(addr1.address, true)).to.revertedWith("Ownable:

caller is not the owner");

Pepe Token

Presented by Fairyproof11

Fa
ir
yp
ro
of

2. output:

 await expect(instance.setRule(true, AddressZero, AddressZero,

AddressZero)).to.revertedWith("Ownable: caller is not the owner");

 });

 });

 describe("BlackLists test", function () {

 it("Users in blacklist should not be able to transfer", async function () {

 const { instance } = await deployToken();

 const transferAmount = 5000;

 await instance.blacklist(addr1.address, true);

 await expect(instance.transfer(addr1.address,

transferAmount)).to.revertedWith("Blacklisted");

 await expect(instance.connect(addr1).transfer(owner.address,

transferAmount)).to.revertedWith("Blacklisted");

 expect(await instance.balanceOf(addr1.address)).to.equal(0);

 await instance.blacklist(addr1.address, false);

 await instance.transfer(addr1.address, transferAmount)

 expect(await instance.balanceOf(addr1.address)).to.equal(transferAmount);

 });

 it("The owner can manage the blacklist himself", async function () {

 const { instance } = await deployToken();

 const transferAmount = 5000;

 await instance.blacklist(owner.address, true);

 await expect(instance.transfer(addr1.address,

transferAmount)).to.revertedWith("Blacklisted");

 await instance.blacklist(owner.address, false);

 await instance.transfer(addr1.address, transferAmount)

 });

 });

});

 PepeToken Test

 Deployment test

 ✔ Should set the correct metadata (919ms)
 Function beforeTokenTransfer test

 ✔ Only owner can transfer until uniswapV2Pair is set (82ms)
 ✔ Should respect maxHoldingAmount and minHoldingAmount (52ms)
 Transactions test

 ✔ Should transfer tokens between accounts
 ✔ Should be failed if sender doesn’t have enough tokens
 ✔ Should be failed if sender transfer to zero address
 ✔ Should be successful if sender transfer to himself
 ✔ Should be successful if sender transfer zero amount

Pepe Token

Presented by Fairyproof12

Fa
ir
yp
ro
of

af://n251

Index Function Visibility StateMutability Permission Check IsUserInterface Unit Test Notes

1 blacklist(address,bool) external onlyOwner Passed

2 setRule(bool,address,uint256,uint256) external onlyOwner Passed

3 burn(uint256) external Yes Passed

4 name() public view Passed

5 symbol() public view Passed

6 decimals() public view Passed

7 totalSupply() public view Passed

8 balanceOf(address) public view Passed

9 transfer(address,uint256) public Yes Passed

10 allowance(address,address) public view Passed

11 approve(address,uint256) public Yes Passed

12 transferFrom(address,address,uint256) public Yes Passed

13 increaseAllowance(address,uint256) public Yes Passed

14 decreaseAllowance(address,uint256) public Yes Passed

15 owner() public view Passed

16 renounceOwnership() public onlyOwner Passed

17 transferOwnership(address) public onlyOwner Passed

11.2 External Functions Check Points

1. File: contracts/PepeToken.sol

(Empty fields in the table represent things that are not required or relevant)

contract: PepeToken is Ownable, ERC20

 ✔ TransferFrom should need enough allowance (52ms)
 Burn test

 ✔ Allows users to burn their own tokens
 Allowance test

 ✔ Should update the allowance when approving
 Ownership test

 ✔ Should transfer and renounce ownership correctly
 ✔ Should lose ownership if the owner renounces ownership
 BlackLists test

 ✔ Users in blacklist should not be able to transfer (40ms)
 ✔ The owner can manage the blacklist himself

 15 passing (1s)

Pepe Token

Presented by Fairyproof13

Fa
ir
yp
ro
of

af://n256
af://n258

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to Pepe
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08. issues by severity
	- N/A

	09. Issue descriptions
	- N/A

	10. Recommendations to enhance the overall security
	- N/A

	11. Appendices
	11.1 Unit Test
	1. PepeToken.t.js
	2. output:

	11.2 External Functions Check Points
	1. File: contracts/PepeToken.sol

