@ FAIRYPROOF

OCD Token
AUDIT REPORT

Version 1.0.0

Serial No. 2023101400012016
Presented by Fairyproof

October 14, 2023

OCD Token

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the On-
Chain Dynamics token issuance project.

Audit Start Time:

October 13, 2023

Audit End Time:

October 14, 2023

Audited Source File's Address:

https://etherscan.io/address/0x017e9db34fc69af0dc7c7b4b33511226971cddc7#code

The goal of this audit is to review On-Chain Dynamics Token's solidity implementation for its token
issuance function, study potential security vulnerabilities, its general design and architecture, and
uncover bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the On-Chain
Dynamics Token team for specified versions. Whenever the code, software, materials, settings,
environment etc is changed, the comments of this audit will no longer apply.

— Disclaimer

Note that as of the date of publishing, the contents of this report reflect the current understanding
of known security patterns and state of the art regarding system security. You agree that your
access and/or use, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

Presented by Fairyproof

af://n2
https://etherscan.io/address/0x017e9db34fc69af0dc7c7b4b33511226971cddc7#code
af://n16

OCD Token

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology

The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:
1. Code Review, Including:
e Project Diagnosis

Understanding the size, scope and functionality of your project's source code based on the
specifications, sources, and instructions provided to Fairyproof.

e Manual Code Review
Reading your source code line-by-line to identify potential vulnerabilities.
e Specification Comparison

Determining whether your project's code successfully and efficiently accomplishes or executes its
functions according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:
e Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or
executed when test cases are run.

e Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to
execute its functions.

3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest
established industry and academic practices, recommendations, and research.

Presented by Fairyproof

af://n24
af://n58

OCD Token
— Structure of the document

This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

— Documentation

For this audit, we used the following source(s) of truth about how the token issuance function
should work:

Website:https://www.onchaindynamics.io/

Whitepaper:https://www.onchaindynamics.io/OCD LitepaperV2.pdf

Source Code:
https://etherscan.io/address/0x017e9db34fc69af0dc7c7b4b33511226971cddc7#code

These were considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the On-Chain Dynamics Token team or reported an issue.

— Comments from Auditor

Serial Number Auditor Audit Time Result

2023101400012016 Fairyproof Security Team Oct 13, 2023 - Oct 14, 2023

@ o critical @

@ o High

0

Total Findings 0 Medium
‘ . 0 Low © All Resolved

[0 Info

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, no issues were uncovered.

Presented by Fairyproof

af://n58
af://n61
https://www.onchaindynamics.io/
https://www.onchaindynamics.io/OCD_LitepaperV2.pdf
https://etherscan.io/address/0x017e9db34fc69af0dc7c7b4b33511226971cddc7#code
af://n68
af://n85

OCD Token

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

03. Introduction to On-Chain Dynamics
Token

Onchain Dynamics, encapsulating the intricate interactions among nodes, consensus mechanisms,
smart contracts, decentralized applications (DApps), scalability solutions, and governance
processes, stand as the vital life force of blockchain technology.

The above description is quoted from relevant documents of On-Chain Dynamics Token.

04. Major functions of audited code

The audited code mainly implements a token issuance function. Here are the details:

e Blockchain: Ethereum

e Token Standard: ERC-20

e Token Address: 0x017e9db34fc69af0dc7c7b4b33511226971cddc7
e Token Name: On-Chain Dynamics

e Token Symbol: OCD

e Decimals: 18

e Current Supply: 1,000,000,000

e Max Supply: 1,000,000,000

e Taxable: Yes

Note:

Transaction fees will be charged when traders trade specific tokens or add liquidity for the specific
token pairs. The charged transaction fees will be converted to the specific token pairs and added
to the liquidity. The admin can change the transaction fee's rate.

Presented by Fairyproof

af://n85
https://www.fairyproof.com/
af://n89
af://n94

05. Coverage of issues

OCD Token

The issues that the Fairyproof team covered when conducting the audit include but are not limited

to the following ones:

Access Control
Admin Rights
Arithmetic Precision
Code Improvement
Contract Upgrade/Migration
Delete Trap

Design Vulnerability
DosS Attack

EOA Call Trap

Fake Deposit
Function Visibility
Gas Consumption

Implementation Vulnerability

Inappropriate Callback Function

Injection Attack

Integer Overflow/Underflow
IsContract Trap

Miner's Advantage

Misc

Price Manipulation

Proxy selector clashing
Pseudo Random Number
Re-entrancy Attack
Replay Attack

Rollback Attack

Shadow Variable

Slot Conflict

Token Issuance

Tx.origin Authentication

Uninitialized Storage Pointer

Presented by Fairyproof

af://n122
af://n189

OCD Token

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

severity issues need to be fixed as soon as possible.
@ severity issues will probably bring problems and should be fixed.
Medium severity issues could potentially bring problems and should eventually be fixed.

WA severity issues are minor details and warnings that can remain unfixed but would be
better fixed at some point in the future.

i g a8 is not an issue or risk but a suggestion for code improvement.

07. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks
related to the following functions or areas.

- Function Implementation

We checked whether or not the functions were correctly implemented.
We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control

We checked each of the functions that could modify a state, especially those functions that could
only be accessed by owner or administrator
We didn't find issues or risks in these functions or areas at the time of writing.

- Token Issuance & Transfer

We examined token issuance and transfers for situations that could harm the interests of holders.
We didn't find issues or risks in these functions or areas at the time of writing.

Presented by Fairyproof

af://n189
af://n203
af://n207
af://n210
af://n213
af://n216

OCD Token
- State Update

We checked some key state variables which should only be set at initialization.
We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security

We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous

We checked the code for optimization and robustness.
We didn't find issues or risks in these functions or areas at the time of writing.

08. issues by severity

- N/A

09. Issue descriptions

- N/A

10. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

e Consider managing the owner's access control with great care and transfering it to a multi-sig
wallet or DAO when necessary.

Presented by Fairyproof

af://n216
af://n219
af://n222
af://n226
af://n228
af://n230
af://n232
af://n235

OCD Token

11. Appendices

11.1 Unit Test

1. OCD.t.js

const {
loadFixture,
impersonateAccount
} = require("@nomicfoundation/hardhat-toolbox/network-helpers");
const { expect } = require('chai");
const { zeroAddress } = require("ethers");
const { ethers } = require("hardhat");

describe("ocD Token Test", function () {
let addrl, addr2;
const totalSupply = ethers.parseEther("1000000000")
const Depoloyer = "0OxeCAB3064BOFCa52fdcc8422280a927EF8f51fESD"
const DexRouter = "0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D"
const OCD = "Ox017E9Db34fC69AT0dC7c7b4b33511226971cDdc7"
const WETH = "0xC02aaA39b223FE8DOAOe5C4F27eAD9083C756Cc2"
const Marketwallet = "OxdBBa71D308125218B1cb0fa4f93662EbDc28b43D"
const minSwapAmount = totalSupply / BigInt(4000)
const percentDivider = BigInt(100)
const marketFeeOnBuy = BigInt(1l)
const marketFeeonSell = BigInt(9)
const addrlBalance = ethers.parseEther("100")

const getTotalBuyFeePerTx = (amount) => (amount * marketFeeOnBuy) /
percentDivider

const getTotalSellFeePerTx = (amount) => (amount * marketFeeonsell) /
percentDivider

async function deployToken() {
[addrl, addr2] = await ethers.getSigners();
// const OCD = await ethers.getContractFactory("0oCD");
// const instance = await OCD.deploy();
const instance = await ethers.getContractAt("ocD", 0OCD);
await impersonateAccount(Depoloyer);
const DepoloySigner = await ethers.getSigner(Depoloyer)
await instance.connect(DepoloySigner).transfer(addrl.address, addrlBalance);

const transferownership = async () => {
await impersonateAccount(Depoloyer);
const DepoloySigner = await ethers.getSigner(Depoloyer)
await instance.connect(DepoloySigner).transferownership(addrl.address);
expect(await instance.owner()).to.equal(addrl.address);

Presented by Fairyproof

af://n243
af://n245
af://n247

OCD Token

return { instance, DepoloySigner, transferownership };

describe("Read contract test", function () {
it("should have the correct erc20 metadata", async function () {
const { instance } = await loadFixture(deployToken);

expect(await instance.name()).to.equal("on-Chain Dynamics");

expect(await instance.symbol()).to.equal("oCcD");

expect(await instance.decimals()).to.equal(18);

expect(await instance.owner()).to.equal(Depoloyer);

expect(await instance.totalSupply()).to.equal(totalSupply);

expect(await instance.balanceof(Depoloyer)).to.lt(totalSupply);
I3 H

it("should have the correct state", async function () {
const { instance } = await loadFixture(deployToken);

expect(await instance.dexRouter()).to.equal(DexRouter) ;
expect(await instance.distributeAndLiquifyStatus()).to.equal(true);
expect(await instance.feesStatus()).to.equal(true);

expect(await instance.percentDivider()).to.equal(percentDivider);
expect(await instance.marketwallet()).to.equal(Marketwallet);
expect(await instance.minSwapAmount()).to.equal(minSwapAmount) ;
expect(await instance.marketFeeonBuy()).to.equal(marketFeeOnBuy);
expect(await instance.marketFeeonSell()).to.equal(marketFeeonsell);

expect(await instance.isExcludedFromFee(Depoloyer)).to.equal(true);
expect(await instance.isExcludedFromFee(0CD)).to.equal(true);

s

it("should have the correct fee getter", async function () {
const { instance } = await loadFixture(deployToken);

const amount = BigInt(100)
expect(await
instance.totalBuyFeePerTx(amount)).to.equal (getTotalBuyFeePerTx(amount));
expect(await
instance.totalSellFeePerTx(amount)).to.equal(getTotalSellFeePerTx(amount));
s
3

describe("Transactions between eoa accounts test", function () {
it("should transfer tokens between accounts", async function () {

const { instance } = await loadFixture(deployToken);

expect(await instance.balanceof(addrl.address)).to.equal(addrlBalance);

const transferAmount = BigInt(5000);

await expect(instance.transfer(addr2.address, transferAmount))

.be.emit(instance, "Transfer").withArgs(addrl.address, addr2.address,

transferAmount) ;

expect(await instance.balanceof(addr2.address)).to.equal(transferAmount);

expect(await instance.balanceof(addrl.address)).to.equal(addrlBalance -
transferAmount) ;

s

Presented by Fairyproof

OCD Token

it("should be failed if sender doesn’t have enough tokens", async function ()

const { instance } = await loadFixture(deployToken);
expect(await instance.balanceof(addr2.address)).to.equal(0);
await expect(instance.connect(addr2).transfer(addrl.address,
1)) .to.reverted;
expect(await instance.balanceof(addrl.address)).to.equal(addriBalance);

s

it("should be failed if sender transfer to or transfer from zero address",

async function () {

const { instance } = await loadFixture(deployToken);

const transferAmount = BigInt(5000);

await expect(instance.transfer(zeroAddress,
transferAmount)).to.revertedwith("ocD: transfer to the zero address");

await expect(instance.transferFrom(addrl.address, zZeroAddress,
transferAmount)).to.revertedwith("oCD: transfer to the zero address");

await expect(instance.transferFrom(zZeroAddress, addrl.address,
transferAmount)).to.revertedwith("ocD: transfer from the zero address");

await expect(instance.transferFrom(addrl.address, addr2.address,
0)).to.revertedwith("oCD: Amount must be greater than zero");

s

it("should be successful if sender transfer to himself, and will Toose fees
, async function () {
const { instance } = await loadFixture(deployToken);
const transferAmount = BigInt(5000);

await expect(instance.transfer(addr2.address, transferAmount))
.be.emit(instance, "Transfer").withArgs(addrl.address, addr2.address,
transferAmount) ;
await instance.approve(addrl.address, transferAmount);
await expect(instance.transferfFrom(addrl.address, addrl.address,
transferAmount))
.be.emit(instance, "Transfer").withArgs(addrl.address, addrl.address,
transferAmount) ;
expect(await instance.balanceof(addrl.address)).to.equal(addrlBalance -
transferAmount) ;

i9)

it("TransferFrom should need enough allowance", async function () {
const { instance } = await loadFixture(deployToken);

const transferAmount = BigInt(5000);

await instance.transfer(addr2.address, transferAmount)
await expect(instance.transferFrom(addr2.address, addrl.address,
transferAmount)).to.reverted;

await instance.connect(addr2).approve(addrl.address, transferAmount);
await expect(instance.transferFrom(addr2.address, addrl.address,
transferAmount))
.be.emit(instance, "Transfer").withArgs(addr2.address, addrl.address,
transferAmount) ;
expect(await instance.balanceof(addrl.address)).to.equal(addrlBalance);

i3 H 10
Presented by Fairyproof

OCD Token
Dk

describe("Allowance test", function () {
it("should update the allowance after approving"”, async function () {
const { instance } = await loadFixture(deployToken);
const approveAmount = BigInt(1000)

await expect(instance.approve(addr2.address, approveAmount))
.to.emit(instance, "Approval").withArgs(addrl.address, addr2.address,
approveAmount) ;
const allowance = await instance.allowance(addrl.address, addr2.address);
expect(allowance).to.equal(approveAmount) ;
// increse allowance again
await expect(instance.increaseAllowance(addr2.address, approveAmount))
.to.emit(instance, "Approval").withArgs(addrl.address, addr2.address,
approveAmount * BigInt(2));
expect(await instance.allowance(addrl.address,
addr2.address)) .to.equal (approveAmount * BigInt(2));
// decrease allowance
await expect(instance.decreaseAllowance(addr2.address, approveAmount))
.to.emit(instance, "Approval").withArgs(addrl.address, addr2.address,
approveAmount) ;

s

it("should underflow when decreasing allowance below zero", async function ()

const { instance } = await loadFixture(deployToken);
const approveAmount = ethers.parseEther("1000");
await instance.approve(addr2.address, approveAmount);

await expect(instance.decreaseAllowance(addr2.address, approveAmount + 1n))
.to.reverted;
expect(await instance.allowance(addrl.address,
addr2.address)) .to.equal(approveAmount) ;
I3 H
35

describe("ownership test", function () {
it("should transfer and renounce ownership correctly", async function () {
const { instance } = await loadFixture(deployToken);

expect(await instance.owner()).to.equal(Depoloyer);

await impersonateAccount(Depoloyer);

const DepoloySigner = await ethers.getSigner(Depoloyer)

await instance.connect(DepoloySigner).transferownership(addrl.address);
expect(await instance.owner()).to.equal(addrl.address);

await instance.connect(addrl).renounceownership();
expect(await instance.owner()).to.equal(ZeroAddress);
3
b))

describe("ownable functions test", function () {
it("only owner can call function setIncludeorexcludeFromFee", async function

O {

const { instance, transferownership } = await loadFixture(deployToken);

11
Presented by Fairyproof

OCD Token

await expect(instance.setIncludeOorExcludeFromFee(addrl.address,
true)) .be.revertedwith("ownable: caller is not the owner™)

await transferownership()

expect(await instance.isExcludedFromFee(addrl.address)).to.equal(false);

await expect(instance.setIncludeorExcludeFromFee(addrl.address, true))
.be.emit(instance, "ExcludeFromFee')
.withArgs(addrl.address, true);

expect(await instance.isExcludedFromFee(addrl.address)).to.equal(true);

s

it("only owner can call function updateSwapAmount", async function () {
const { instance, transferownership } = await loadFixture(deployToken);
await expect(instance.updateSwapAmount(1000)).be.revertedwith("ownable:
caller 1is not the owner")

await transferownership()
expect(await instance.minSwapAmount()).to.equal(minSwapAmount);
await expect(instance.updateSwapAmount(1000))

.be.emit(instance, "NewSwapAmount").withArgs(ethers.parseEther("1000"));
expect(await instance.minSwapAmount()).to.equal(ethers.parseether("1000"));

s

it("only owner can call function updateBuyFee", async function () {
const { instance, transferownership } = await loadFixture(deployToken);
await expect(instance.updateBuyFee(2)).be.revertedwith("ownable: caller is
not the owner")
await transferownership()
expect(await instance.marketFeeOnBuy()).to.equal(marketFeeOnBuy);
await expect(instance.updateBuyFee(2))
.be.emit(instance, "FeeUpdated").withArgs(2);
expect(await instance.marketFeeonBuy()).to.equal(2);

s

it("only owner can call function updateSellFee", async function () {
const { instance, transferownership } = await loadFixture(deployToken);
await expect(instance.updateSellFee(10)).be.revertedwith("ownable: caller
is not the owner")
await transferownership()
expect(await instance.marketFeeonsell()).to.equal(marketFeeonsell);
await expect(instance.updateSellFee(10))
.be.emit(instance, "FeeUpdated").withArgs(10);
expect(await instance.marketFeeonsell()).to.equal(10);

s

it("only owner can call function setDistributionStatus", async function () {

const { instance, transferownership } = await loadFixture(deployToken);

await
expect(instance.setDistributionStatus(false)).be.revertedwith("ownable: caller is
not the owner")

await transferownership()

await expect(instance.setDistributionStatus(true)).be.revertedwith("value
must be different from current state")

expect(await instance.distributeAndLiquifyStatus()).to.equal(true);

await expect(instance.setDistributionStatus(false))

.be.emit(instance, "DistributionStatus™).withArgs(false);
expect(await instance.distributeAndLiquifyStatus()).to.equal(false);

3 12
Presented by Fairyproof

OCD Token

it("only owner can call function enableorDisableFees", async function () {
const { instance, transferownership } = await loadFixture(deployToken);
await expect(instance.enableOrDisableFees(false)).be.revertedwith("ownable:
caller 1is not the owner")
await transferownership()
await expect(instance.enableOrDisableFees(true)).be.revertedwith("value
must be different from current state")
expect(await instance.feesStatus()).to.equal(true);
await expect(instance.enableOrDisableFees(false))
.be.emit(instance, "FeeStatus").withArgs(false);
expect(await instance.feesStatus()).to.equal(false);

s

it("only owner can call function updatemarketwallet", async function () {
const { instance, transferownership } = await loadFixture(deployToken);
await
expect(instance.updatemarketwallet(addr2.address)) .be.revertedwith("ownable:
caller is not the owner")
await transferownership()
await
expect(instance.updatemarketwallet(zeroAddress)) .be.revertedwith("ownable: new
marketwallet is the zero address'")
expect(await instance.marketwallet()).to.equal(Marketwallet);
await expect(instance.updatemarketwallet(addr2.address))
.be.emit(instance, "marketwalletUpdated").withArgs(addr2.address,
Marketwallet);
expect(await instance.marketwallet()).to.equal(addr2.address);
I3 H
55

describe("send ETH and withdraweTH test", function () {
it("Contract can receive ETH", async function () {
const initialBalance = await ethers.provider.getBalance(0CD)
const amount = ethers.parseEther("1.0");
await addrl.sendTransaction({
to: 0CD,
value: amount
o
expect(await ethers.provider.getBalance(0oCD)).to.gt(initialBalance);
3

it("only owner can call withdraweTH", async function (O {
const { instance, transferownership } = await loadFixture(deployToken);
await expect(instance.withdraweTH(100)) .be.revertedwith("ownable: caller is
not the owner")
await transferownership()
const initialBalance = await ethers.provider.getBalance(0CD)
await expect(instance.withdraweTH(initialBalance +
BigInt(100))) .be.revertedwith("Invalid Amount")
const amount = ethers.parseEther("1.0");
await addrl.sendTransaction({
to: 0OCD,
value: amount
3
await expect(instance.withdrawETHﬁ%?O))

Presented by Fairyproof

OCD Token
.be.emit(instance, "Transfer").withArgs(ocD, addrl.address, 100);
s
E)E

describe("Transfer fee unit test", function (O {
it("Add liquidity will take fee", async function () {
const { instance } = await loadFixture(deployToken);

const dexPairAddress = await instance.dexPair()

expect(await instance.isExcludedFromFee(dexPairAddress)).to.equal(false)
const initialDexPairBalance = await instance.balanceof(dexPairAddress)
const initialocdBalance = await instance.balanceof(0CD)

const DexRouterInstance = await ethers.getContractAt("UniswapV2Router02",
DexRouter);
const amountETH = ethers.parseether("1");
await instance.approve(DexRouter, addrlBalance);
await DexRouterInstance.addLiquidityETH(
0ocCD,
addrlBalance,
0,
0,
addrl.address,
pDate.now() + 1000 * 60 * 10,
{ value: amountETH }

const allFee = getTotalSellFeePerTx(addrlBalance)
expect(await instance.balanceof(addrl.address)).to.equal(0);
expect(await instance.balance0of(0CD)).to.equal(initialocdBalance + allFee);
expect(await
instance.balanceof (dexPairAddress)).to.equal(initialbexPairBalance + addrlBalance
- allFee);

s

it("Tansfer to dexPair will take fee", async function () {
const { instance } = await loadFixture(deployToken);

const dexPairAddress = await instance.dexPair()

expect(await instance.isExcludedFromFee(dexPairAddress)).to.equal(false)
const initialDexPairBalance = await instance.balanceOof(dexPairAddress)
const initialocdBalance = await instance.balanceof(0CD)

await instance.transfer(dexPairAddress, addrlBalance)

const allFee = getTotalSellFeePerTx(addrlBalance)

expect(await instance.balanceof(addrl.address)).to.equal(0);

expect(await instance.balanceof(0CD)).to.equal(initialocdBalance + allFee);
expect(await

instance.balanceof (dexPairAddress)).to.equal(initialbexPairBalance + addrlBalance
- allFee);

s

it("Remove liquidity will not take fee if router is excludedFromFee", async
function O {
const { instance } = await loadFixture(deployToken);
14
Presented by Fairyproof

OCD Token
const dexPairAddress = await instance.dexPair()

expect(await instance.isExcludedFromFee(dexPairAddress)).to.equal(false)
expect(await instance.balanceof(addr2.address)).to.equal(0);

const DexRouterInstance = await ethers.getContractAt("UniswapV2Router02",
DexRouter);

const amountETH = ethers.parseEther("1");

await instance.approve(DexRouter, addrlBalance);

// add liquidiy first

await DexRouterInstance.addLiquidityETH(OCD, addrlBalance, 0, O,
addrl.address, Date.now() + 1000 * 60 * 10, { value: amountETH })

const initialPairBalance = await instance.balanceof(dexPairAddress)

const initialocdBalance = await instance.balanceof(0CD)

const dexPairInstance = await ethers.getContractAt("Uniswapv2Pair",
dexPairAddress);

const liquidityAmount = await dexPairInstance.balanceof(addrl.address)

expect(liquidityAmount).to.gt(0)

// remove Tliqudity

await dexPairInstance.approve(DexRouter, TiquidityAmount)

await DexRouterInstance.removeLiquidityETH(OCD, 1liquidityAmount, 0, O,
addr2.address, Date.now() + 1000 * 60 * 10)

const [reserve0O, reservel] = await dexPairInstance.getReserves()

const totalLiquidity = await dexPairInstance.totalSupply()

const amount0 = TiquidityAmount * reserveO / totalLiquidity

*

const amountl = TliquidityAmount reservel / totalLiquidity
const allFee = getTotalBuyFeePerTx(amount0)
expect(await instance.balanceof(addr2.address)).to.equal(amount0);
expect(await
instance.balanceof(dexPairAddress)).to.equal(initialPairBalance - amount0);

s

it("Transfer include buy fee test", async () => {
const { instance } = await loadFixture(deployToken);
const dexPairAddress = await instance.dexPair()
const DexRouterInstance = await ethers.getContractAt("uUniswapV2Router02",
DexRouter) ;
const dexPairInstance = await ethers.getContractAt("Uniswapv2Pair",
dexPairAddress);
const amountETH = ethers.parseEther("1");
await instance.approve(DexRouter, addrlBalance);
await DexRouterInstance.addLiquidityETH(
ocCD,
addrlBalance,
0},
0,
addrl.address,
Date.now() + 1000 * 60 * 10,
{ value: amountETH }

const [reserve0O, reservel, blockTimestampLast] = await
dexPairInstance.getReserves()
const amountIn = ethers.parseether('0.5")
const amountout = await DexRouterInstance.getAmountOut(amountIn, reservel,
reserve0)
15

Presented by Fairyproof

OCD Token

const allFee = getTotalBuyFeePerTx(amountOut)
const initialocdBalance = await instance.balanceof(0CD)
await DexRouterInstance.swapExactETHForTokensSupportingFeeonTransferTokens
0},
[WETH, ocD],
addr2.address,
Date.now() + 1000 * 60 * 10,
{ value: amountIn }
)
expect(await instance.balanceOof(0CD)).to.equal(initialocdBalance + allFee);
expect(await instance.balanceof(addr2.address)).to.be.equal(amountout -
(allFee))
b

it("Function distributeAndLiquify will excute while contractTokenBalance
reach minSwapAmount", async () => {
const { instance, DepoloySigner } = await loadFixture(deployToken);

const DexRouterInstance = await ethers.getContractAt("UniswapV2Router02",
DexRouter);
await instance.connect(DepoloySigner).setIncludeOreExcludeFromFee(Depoloyer,
false)
const amountETH = ethers.parseEther("15");
await instance.connect(DepoloySigner).approve(DexRouter, totalSupply /
BigInt(2));
await DexRouterInstance.connect(DepoloySigner).addLiquidityETH(
0CD,
totalSupply / BigInt(2),
0,
0,
addrl.address,
Date.now() + 1000 * 60 * 10,
{ value: amountETH }
)
const contractTokenBalance = await instance.balanceof(0CD)
expect(contractTokenBalance).to.gt(minSwapAmount) ;

// distributeAndLiquify will excute

await instance.transfer(addr2.address, BigInt(100))

expect(await instance.balanceof(0CD)).to.equal(contractTokenBalance -
minSwapAmount) ;

s

)8
b;

16
Presented by Fairyproof

OCD Token
2. output:

OCD Token Test
Read contract test
v Should have the correct erc20 metadata (16711ms)
v Should have the correct state (2582ms)
v Should have the correct fee getter
Transactions between eoa accounts test
v Should transfer tokens between accounts (1137ms)
v Should be failed if sender doesn’t have enough tokens (58ms)
v Should be failed if sender transfer to or transfer from zero address
v Should be successful if sender transfer to himself, and will loose fees
(394ms)
v TransferFrom should need enough allowance (402ms)
Allowance test
v Should update the allowance after approving (421ms)
v Should underflow when decreasing allowance below zero (44ms)
ownership test
v Should transfer and renounce ownership correctly
ownable functions test
v only owner can call function setIncludeOrExcludeFromFee
only owner can call function updateSwapAmount
only owner can call function updateBuyFee
only owner can call function updateSellFee
only owner can call function setDistributionstatus
only owner can call function enableOrbDisableFees

NGRS

v only owner can call function updatemarketwallet
Send ETH and withdrawETH test

v Contract can receive ETH

v only owner can call withdrawETH

v Add Tliquidity will take fee (12696ms)

v Tansfer to dexPair will take fee (43ms)

v Remove liquidity will not take fee if router is excludedFromFee (1681ms)

v Transfer include buy fee test (93ms)

v Function distributeAndLiquify will excute while contractTokenBalance
reach minSwapAmount (1625ms)

25 passing (38s)

11.2 External Functions Check Points

17
Presented by Fairyproof

af://n251
af://n256

1. File: contracts/OCD.sol

OCD Token

(Empty fields in the table represent things that are not required or relevant)

contract: OCD is Context, IERC20, Ownable, ReentrancyGuard

Index

20

21

22

23

24

25

Function

setincludeOrExcludeFromFee(address,bool)

updateSwapAmount(uint256)
updateBuyFee(uint256)
updateSellFee(uint256)
setDistributionStatus(bool)
enableOrDisableFees(bool)
updatemarketWallet(address)
receive()

name()

symbol()

decimals()

totalSupply()

balanceOf(address)
transfer(address,uint256)
allowance(address,address)
approve(address,uint256)
transferFrom(address,address,uint256)
increaseAllowance(address,uint256)
decreaseAllowance(address,uint256)
totalBuyFeePerTx(uint256)
totalSellFeePerTx(uint256)
withdrawETH(uint256)

owner()

renounceOwnership()

transferOwnership(address)

Visibility
external
external
external
external
external
external
external
external
public
public
public
public
public
public
public
public
public
public
public
public
public
external
public
public

public

StateMutability

payable
view
view
view
view

view

view

view

view

view

18

Permission
Check

onlyOwner
onlyOwner
onlyOwner
onlyOwner
onlyOwner
onlyOwner

onlyOwner

onlyOwner

onlyOwner

onlyOwner

Unit

IsUserInterface Notes

Yes

Yes

Yes

Yes

Test

Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

Passed

Presented by Fairyproof

af://n258

FAIRYPROOF

https://medium.com/@FairyproofT
https://twitter.com/FairyproofT
https://www.linkedin.com/company/fairyproof-tech
https://t.me/Fairyproof_tech

Reddit: https://www.reddit.com/user/FairyproofTech

0065086

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to On-Chain Dynamics Token
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08. issues by severity
	- N/A

	09. Issue descriptions
	- N/A

	10. Recommendations to enhance the overall security
	11. Appendices
	11.1 Unit Test
	1. OCD.t.js
	2. output:

	11.2 External Functions Check Points
	1. File: contracts/OCD.sol

