@ FAIRYPROOF

Investment Vault
AUDIT REPORT

Version 1.0.0
Serial No. 2025122100012018
Presented by Fairyproof

December 21, 2025

Fairyproof InvestmentVault

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Singularry InvestmentVault project.
Audit Start Time:

December 19, 2025

Audit End Time:

December 21, 2025

Audited Code's Github Repository:

https://github.com/singularry/sly-investment-vault/

Audited Code's Github Commit Number When Audit Started:
b1ff722129ab4eb4dde2ccaed9ba77abd4bal6bbe
Audited Code's Github Commit Number When Audit Ended:

ed6fd40aacce1367c¢10f01822b04c10e37692ce?7

The goal of this audit is to review Singularry’s solidity implementation for its InvestmentVault function, study potential security
vulnerabilities, its general design and architecture, and uncover bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as general observations that
traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Singularry team for specified versions.
Whenever the code, software, materials, settings, environment etc is changed, the comments of this audit will no longer apply.

— Disclaimer

Note that as of the date of publishing, the contents of this report reflect the current understanding of known security patterns
and state of the art regarding system security. You agree that your access and/or use, including but not limited to any
associated services, products, protocols, platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming language, or other
programming aspects that could present security risks. If the audited source files are smart contract files, risks or issues
introduced by using data feeds from offchain sources are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further testing and audit is
recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with this report, its
content, and the related services and products and your use thereof, including, without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or offered by a third
party through the product, any open source or third-party software, code, libraries, materials, or information linked to, called
by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked
websites, any websites or mobile applications appearing on any advertising, and we will not be a party to or in any way be
responsible for monitoring any transaction between you and any third-party providers of products or services.

2/31

https://github.com/singularry/sly-investment-vault/

Fairyproof InvestmentVault

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED
SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX,
LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology

The above files' code was studied in detail in order to acquire a clear impression of how the its specifications were
implemented. The codebase was then subject to deep analysis and scrutiny, resulting in a series of observations. The
problems and their potential solutions are discussed in this document and, whenever possible, we identify common sources
for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:
1. Code Review, Including:
e Project Diagnosis

Understanding the size, scope and functionality of your project’s source code based on the specifications, sources, and
instructions provided to Fairyproof.

e Manual Code Review
Reading your source code line-by-line to identify potential vulnerabilities.
e Specification Comparison

Determining whether your project's code successfully and efficiently accomplishes or executes its functions according to the
specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:
e Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or executed when test cases are
run.

e Symbolic Execution
Analyzing a program to determine the specific input that causes different parts of a program to execute its functions.
3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest established industry and
academic practices, recommendations, and research.

— Structure of the document

This report contains a list of issues and comments on all the above source files. Each issue is assigned a severity level based
on the potential impact of the issue and recommendations to fix it, if applicable. For ease of navigation, an index by topic and
another by severity are both provided at the beginning of the report.

— Documentation

For this audit, we used the following source(s) of truth about how the token issuance function should work:

Website:https://singularry.org/

Source Code: https://github.com/singularry/sly-investment-vault/

3/31

https://singularry.org/
https://github.com/singularry/sly-investment-vault/

Fairyproof InvestmentVault

These were considered the specification, and when discrepancies arose with the actual code behavior, we consulted with the
Singularry team or reported an issue.

— Comments from Auditor

Serial Number Auditor Audit Time Result
2025122100012018 Fairyproof Security Team Dec 19, 2025 - Dec 21, 2025 [Low Risk |
. @ o Critical © All Resolved
@ 1 High © All Resolved

8

Total Findings 3 Medium © All Resolved!
. 3 Low © 2 Resolved
1 Info © All Resolved

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project. During the audit, one issue of
high-severity, three issues of medium-severity, three issues of low-severity and one issue of info-severity were uncovered. The
Singularry team fixed one issue of high, three issues of medium, two issues of low and one issue of info, and acknowledged
the remaining issues.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits for organizations.
Fairyproof has developed industry security standards for designing and deploying blockchain applications.

03. Introduction to Singularry

Singularry is a platform of creating next-generation financial systems with intelligent, autonomous protocols and seamless
cross-chain operations.

The above description is quoted from relevant documents of Singularry.

04. Major functions of audited code

4/31

https://www.fairyproof.com/

Fairyproof InvestmentVault

The InvestmentVault contract implements a token locking and investment protocol with periodic yield distribution. Users lock
tokens as collateral to gain eligibility for investment during defined periods. Each period has configurable parameters such as
maximum total locked tokens, investment window, per-wallet caps, and yield distribution rules. The contract enforces state
transitions for each period (INIT, INVEST, INVESTMENT_ONGOING, WITHDRAWN, YIELD, FINALISED, CANCELLED), manages
user collateral and investments, and allows the owner to withdraw invested funds, deposit yield, and handle emergency
cancellations. All user and admin actions are subject to strict checks to ensure fairness, cap enforcement, and secure fund
management.

Note:

This contract is designed for scenarios where user investment principal is withdrawn from the contract for off-chain or
external investment activities to generate yield, rather than being continuously held within the contract.

05. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited to the following ones:

e Access Control

e Admin Rights

e Arithmetic Precision

e Code Improvement

e Contract Upgrade/Migration
e Delete Trap

e Design Vulnerability

e DoS Attack

e EOA Call Trap

e Fake Deposit

e Function Visibility

e Gas Consumption

e Implementation Vulnerability
e |nappropriate Callback Function
e Injection Attack

e Integer Overflow/Underflow
e [sContract Trap

e Miner's Advantage

e Misc

e Price Manipulation

e Proxy selector clashing

e Pseudo Random Number
e Re-entrancy Attack

® Replay Attack

5/31

Fairyproof InvestmentVault

e Rollback Attack

e Shadow Variable

e Slot Conflict

e Token Issuance

e Tx.origin Authentication

e Uninitialized Storage Pointer

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

severity issues need to be fixed as soon as possible.
@ severity issues will probably bring problems and should be fixed.
Medium severity issues could potentially bring problems and should eventually be fixed.

severity issues are minor details and warnings that can remain unfixed but would be better fixed at some point in the
future.

i dnE el is not anissue or risk but a suggestion for code improvement.

07. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks related to the following
functions or areas.

- Function Implementation

We checked whether or not the functions were correctly implemented.
We found some issues, for more details please refer to [FP-3,FP-4,FP-5,FP-7,FP-8] in "09. Issue description".

- Access Control

We checked each of the functions that could modify a state, especially those functions that could only be accessed by owner
or administrator
We didn't find issues or risks in these functions or areas at the time of writing.

6/31

Fairyproof

- Token Issuance & Transfer

We examined token issuance and transfers for situations that could harm the interests of holders.

We didn't find issues or risks in these functions or areas at the time of writing.

- State Update

We checked some key state variables which should only be set at initialization.
We found one issue, for more details please refer to [FP-2] in "09. Issue description".

- Asset Security

We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous

We checked the code for optimization and robustness.
We found some issues, for more details please refer to [FP-1,FP-6] in "09. Issue description".

08. List of issues by severity

Index Title Issue/Risk
FP-1 Trust Assumptions Admin Rights
FP-2 Multiple Withdrawals of Investments Design Vulnerability
No Emergency Withdrawal or Period Termination . .
FP-3 . Design Vulnerability
Mechanism
FP-4 Investment Window Fairness Issue Design Vulnerability
FP-5 No Minimum Yield Deposit Validation Design Vulnerability
FP-6 Period State Machine Enforcement Weakness Design Vulnerability
Inconsistent Cap Parameters May Cause User . .
FP-7) Design Vulnerability
Confusion
FP-8 State Management Consistency Design Vulnerability

09. Issue descriptions

[FP-1] Trust Assumptions

Low

Issue/Risk: Admin Rights

7/31

Severity

Low

Low

Low

InvestmentVault

Status

Fairyproof InvestmentVault

Description:
Users must trust the admin for all critical operations.
e Admin must return invested funds (no guaranteed minimum yield)
e Admin must complete the period lifecycle in reasonable time
e Admin must not pause the contract indefinitely
e Admin must set fair fee percentages
e Admin must use legitimate ERC20 tokens for investments
Recommendation:
Disclose trust assumptions clearly in documentation and Ul. Consider governance or multi-signature admin for risk mitigation.
Update:
Risk acknowledged. Disclosure recommended.
Status:

The project team is already aware of this and plans to explain it in detail in the documentation.

[FP-2] Multiple Withdrawals of Investments
Issue/Risk: Design Vulnerability
Description:

The admin can call withdrawlnvestments multiple times for the same period, extracting the invested funds repeatedly as long
as the contract balance allows. This is a critical business logic vulnerability.

After the first withdrawal, the period state remains INVESTMENT_ONGOING, allowing repeated withdrawals. This can result in
loss of user funds and protocol insolvency.

This risk is especially severe if investToken and lockToken are the same, as repeated withdrawals can quickly drain the
contract's balance and cause accounting inconsistencies.
Relevant code:

function withdrawInvestments(uint256 periodId) external onlyOwner nonReentrant {

// ...existing code...
if (currentState != PeriodState.INVESTMENT ONGOING) revert InvalidState();
// ...existing code...

IERC20 (period.investToken).safeTransfer (msg.sender, amount);

// ...existing code...

Recommendation:

Introduce a new state (e.g., WITHDRAWN) in Periodstate and set it after the first withdrawal. Subsequent calls should revert
if the state is not INVESTMENT ONGOING . This ensures only one withdrawal per period and prevents repeated fund extraction.

Update:

The project team add period.state = PeriodState.WITHDRAWN; in withdrawlnvestments. So the period state is set to
wITHDRAWN , and any further calls to withdrawInvestments for the same period will revert.
This resolves the vulnerability and ensures correct state transitions regardless of token configuration.

Status:

8/31

Fairyproof InvestmentVault

Fixed at commit 12aecac574961ffc3894d1ee1be14384b7ee86b8.

[FP-3] No Emergency Withdrawal or Period Termination
Mechanism

Issue/Risk: Design Vulnerability
Description:

There is no emergency withdrawal or forced period termination mechanism. Users are fully dependent on the admin to
finalize periods and return funds.

If the admin sets an excessively long period or fails to complete the period lifecycle, user funds may be locked indefinitely.
Relevant code:

function createPeriod(uint256 maxTotalLocked, uint256 periodLength, ...) external onlyOwner returns
(uint256 periodId) {
// ...existing code...

// No upper bound check for periodLength

Recommendation:

Add reasonable bounds for periodLength and investLength. Consider adding an emergency admin or user-triggered period
termination function.

Update:

The project team added the cancelPeriod function to cancel investments in specific scenarios, allowing users to withdraw
their funds.

Status:

Fixed at commit 12aecac574961ffc3894d1ee1be14384b7ee86b8.

[FP-4] Investment Window Fairness Issue

Issue/Risk: Design Vulnerability
Description:

Users can invest at the last moment of the investment window, resulting in minimal lock time, while early investors are locked
for longer.

This mechanism allows “tail-end” investors to avoid long lock periods, which is unfair to early participants and may encourage
MEV/arbitrage behavior.

Relevant code:

function invest(uint256 periodId, uint256 amount) external nonReentrant whenNotPaused {
// ...existing code...
if (block.timestamp > period.investEndTime) revert InvestWindowClosed();

// ...existing code...

Recommendation:

9/31

Fairyproof InvestmentVault

Disclose this risk in documentation. Consider mechanisms to equalize lock duration if business requires fairness.
Update:

The project team has addressed the "Investment Window Fairness" issue by introducing a maxTotalLocked cap for each
period. This ensures that once the cap is reached, no further investments can be made, preventing latecomers from exploiting
the system by locking tokens only at the end of the window. While early users may still need to lock their tokens slightly earlier
than strictly necessary, the team clarified that no funds are actually invested until the investment window closes, and in
practice, the investment window will be kept very short. This minimizes the impact of early locking and ensures fairer
participation for all users. The risk of unfair advantage due to timing is now considered low and mitigated by both the cap and
operational policy.

Status:

Fixed at commit 12aecac574961ffc3894d1ee1be14384b7ee86b8.

[FP-5] No Minimum Yield Deposit Validation

Issue/Risk: Design Vulnerability
Description:

Admin can deposit less yield than the total invested principal, resulting in user losses.

There is no check to ensure the deposited yield covers the total principal. This allows the admin to return less than the
invested amount, causing user losses.

Relevant code:

function depositYield(uint256 periodId, uint256 amount) external onlyOwner nonReentrant {
// ...existing code...
// No minimum principal check
IERC20 (period.investToken).safeTransferFrom(msg.sender, address(this), amount);

// ...existing code...

Recommendation:

Add a check: require(amount >= period.totallnvested, "Yield must cover principal");
If business allows losses, disclose this risk clearly to users.

Update:

The project team added a amount validation in deposityield:

// Ensure yield covers at least the principal (user protection)

if (amount < period.totalInvested) revert InsufficientYieldDeposit();

Status:

Fixed at commit 12aecac574961ffc3894d1ee1be14384b7ee86b8.

[FP-6] Period State Machine Enforcement Weakness

Issue/Risk: Design Vulnerability

10/31

Fairyproof InvestmentVault

Description:

Insufficient enforcement of period state transitions allows certain admin operations (e.g., depositYield) to be called out of
order, potentially breaking the intended lifecycle.

The contract should strictly require that deposityield can only be called after withdrawInvestments (i.e., when the period is
in INVESTMENT ONGOING State). However, the current implementation may allow deposityield to be called prematurely, if
only relying on auto state transitions via getPeriodstate . This can lead to inconsistent period states and unexpected
behavior.

Relevant code:

function depositYield(uint256 periodId, uint256 amount) external onlyOwner nonReentrant {

// ...existing code...
// Should strictly require: period.state == PeriodState.INVESTMENT ONGOING
// ...existing code...

Recommendation:

Introduce a dedicated state (e.g., WITHDRAWN) in the Periodstate enum.

After a successful withdrawlnvestments, set the period state to WITHDRAWN.

Require that deposityield can only be called when the period is in the wITHDRAWN State, not merely INVESTMENT ONGOING .
This ensures strict separation of the withdrawal and yield deposit phases, prevents multiple withdrawals or out-of-order
operations, and enforces a robust state machine for the period lifecycle.

Update:

Project team introduces a new period state (wiTHDRAWN) and while calling withdrawInvestments, set the period state to
WITHDRAWN

Status:

Fixed at commit 12aecac574961ffc3894d1ee1be14384b7ee86b8.

[FP-7] Inconsistent Cap Parameters May Cause User Confusion

Issue/Risk: Design Vulnerability
Description:

If both maxLockPerWallet and maxinvestPerWallet are set, but the lock cap is insufficient to support the maximum investment
(i.e., maxLockPerWallet < maxInvestPerWallet * 1e18 / fraction), users may be unable to reach the maximum allowed
investment even if they reach their lock cap. This could lead to confusion or failed investment attempts.

Recommendation:

Add a parameter consistency check in reatePeriod to ensure that, when both caps are set, maxLockPerWallet is always
sufficient to support maxInvestPerWallet according to the fraction.

Update:

The project team added a cap consistency validation in createPeriod:

if (maxLockPerWallet > 0 && maxInvestPerWallet > 0) {
uint256 requiredLockForMaxInvest = (maxInvestPerWallet * FRACTION_ SCALE) / fraction;

if (maxLockPerWallet < requiredLockForMaxInvest) revert InconsistentCapParameters();

11/31

Fairyproof InvestmentVault

Status:

Fixed at commit ed6fd40aacce1367c10f01822b04c10e37692ce7.

[FP-8] State Management Consistency

Issue/Risk: Design Vulnerability
Description:

State transitions and updates are sometimes performed after reading state, rather than in a unified, atomic manner.
For best practice, state changes should be managed and updated in a single step to avoid inconsistencies and potential race
conditions.

Recommendation:

Refactor state management to ensure atomic updates and transitions, especially for period state changes.
Update:

The project team did not use a unified function approach, but they have handled state transitions correctly.
Status:

Fixed at commit 12aecac574961ffc3894d1ee1be14384b7ee86b8.

10. Recommendations to enhance the overall
security

We list some recommendations in this section. They are not mandatory but will enhance the overall security of the system if
they are adopted.

e Consider managing the owner's access control with great care and transfering it to a multi-sig wallet or DAO when
necessary.

11. Appendices

11.1 Unit Test

1. InvestmentVault.t.sol

// SPDX-License-Identifier: MIT
pragma solidity "0.8.28;

import {InvestmentVault} from "../src/InvestmentVault.sol";

import {IInvestmentVault} from "../src/interfaces/IInvestmentVault.sol";

12/31

Fairyproof

import {Test} from "forge-std/Test.sol";
import {IERC20} from "@openzeppelin-contracts/token/ERC20/IERC20.s0l";
import {ERC20} from "Qopenzeppelin-contracts/token/ERC20/ERC20.s0ol";

contract MockERC20 is ERC20 {

constructor(string memory name, string memory symbol) ERC20(name, symbol) {}

function mint(address to, uint256 amount) external {

_mint(to, amount);

contract InvestmentVaultTest is Test {
InvestmentVault vault;
MockERC20 lockToken;
MockERC20 investToken;

address owner = address(1l);

address userl = address(2);

address user2 = address(3);
uint256 constant FRACTION_SCALE = lel8;

function setUp() public {
lockToken = new MockERC20("Lock Token", "LOCK");
investToken = new MockERC20("USDT", "USDT");

vm.prank (owner) ;
vault = new InvestmentVault(address(lockToken), owner);

// Mint tokens to users

lockToken.mint (userl, 10000 * 1el8);
lockToken.mint (user2, 10000 * 1el8);
investToken.mint (userl, 10000 * 1el8);
investToken.mint (user2, 10000 * 1el8);

investToken.mint (owner, 100000 * 1el8);

// Approve vault

vm.prank(userl);

lockToken.approve (address(vault), type(uint256).max);
vm.prank(userl);

investToken.approve (address(vault), type(uint256).max);
vm.prank (user2);

lockToken.approve (address(vault), type(uint256).max);
vm.prank(user2);

investToken.approve (address(vault), type(uint256).max);
vm.prank(owner) ;

investToken.approve (address(vault), type(uint256).max);

function test Invest LastMoment UnlockAllAfterInvestWindow() public {
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken),
vm.prank (owner) ;
vault.startPeriod(0);

vm.prank(userl);
vault.lock(1000 * 1el8);

13/31

InvestmentVault

500, 0, 0);

Fairyproof InvestmentVault

vm.warp(block.timestamp + 7 days - 1);
vm.prank(userl);
vault.invest (0, 100 * 1lel8);

vm.warp(block.timestamp + 2);

vm.prank (userl);

vault.unlock (1000 * 1lel8);
assertEqg(vault.getUserLocked(userl), 0);

function test DepositYield RevertIfLessThanPrincipal() public {
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 0, 0, 0);
vm.prank (owner) ;
vault.startPeriod(0);
vm.prank(userl);
vault.lock (1000 * 1lel8);
vm.prank(userl);
vault.invest(0, 100 * 1lel8);
vm.warp(block.timestamp + 8 days);
vm.prank (owner) ;
vault.withdrawInvestments(0);
vm.prank (owner) ;
vm.expectRevert (IInvestmentVault.InsufficientYieldDeposit.selector);
vault.depositYield(0, 80 * 1el8);

function test WithdrawYield RevertIfNoDepositYield() public {
vm.prank(owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 0, 0, 0);
vm.prank(owner) ;
vault.startPeriod(0);
vm.prank(userl);
vault.lock (1000 * 1el8);
vm.prank(userl);
vault.invest (0, 100 * 1el8);
vm.warp(block.timestamp + 8 days);
vm.prank(owner) ;
vault.withdrawInvestments(0);
vm.prank(userl);
vm.expectRevert (IInvestmentVault.InvalidState.selector);
vault.withdrawYield(0);

function test_MultiUser ImbalancedInvestments() public {
vm.prank (owner) ;
vault.createPeriod (3000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 0, 0, 0);
vm.prank(owner) ;
vault.startPeriod(0);
vm.prank(userl);
vault.lock (3000 * 1lel8);
vm.prank(userl);
vault.invest (0, 299 * 1lel8);
vm.prank (user2);
vault.lock(10 * 1el8);
vm.prank(user2);
vault.invest(0, 1 * 1el8);
vm.warp(block.timestamp + 8 days);

vm.prank(owner) ;

14/31

Fairyproof InvestmentVault

vault.withdrawInvestments(0);

vm.prank(owner) ;

vault.depositY¥ield(0, 300 * 1lel8);

(uint256 grossl,,) = vault.calculateUserYield(userl, 0);
(uint256 gross2,,) = vault.calculateUserYield(user2, 0);
assertEq(grossl, 299 * lel8);

assertEq(gross2, 1 * 1lel8);

function test_Invest RevertIfCollateralJustEnough() public {
vm.prank(owner) ;
vault.createPeriod(1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 0, 0, 0);
vm.prank (owner) ;
vault.startPeriod(0);
vm.prank (userl);
vault.lock(99 * 1el8);
vm.prank (userl);
vm.expectRevert (IInvestmentVault.InsufficientCollateral.selector);
vault.invest(0, 100 * 1el8);

function test_Unlock RevertIfCollateralRequired() public {
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 0, 0, 0);
vm.prank (owner) ;
vault.startPeriod(0);
vm.prank(userl);
vault.lock (1000 * 1lel8);
vm.prank(userl);
vault.invest (0, 100 * 1el8);
vm.prank(userl);
vm.expectRevert (IInvestmentVault.InsufficientCollateral.selector);
vault.unlock (1000 * 1el8);

function test_DepositYield RevertIfNotWithdrawn() public {
vm.prank(owner) ;
vault.createPeriod (1000 * 1el8, 30 days, 7 days, lel7, address(investToken), 0, 0, 0);
vm.prank (owner) ;
vault.startPeriod(0);
vm.prank(userl);
vault.lock (1000 * 1lel8);
vm.prank (userl);
vault.invest (0, 100 * 1lel8);
vm.warp(block.timestamp + 8 days);
vm.prank (owner) ;
vm.expectRevert (IInvestmentVault.InvalidState.selector);
vault.depositY¥ield(0, 100 * 1lel8);

function test MEV_TemporaryCollateral() public {
vm.prank(owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 0, 0, 0);
vm.prank (owner) ;
vault.startPeriod(0);
vm.warp(block.timestamp + 7 days - 1);
vm.prank(userl);
vault.lock (1000 * 1lel8);
vm.prank(userl);
vault.invest (0, 100 * 1el8);

vm.warp(block.timestamp + 2);

15/31

Fairyproof InvestmentVault

vm.prank(userl);
vault.unlock (1000 * 1el8);
assertEqg(vault.getUserLocked(userl), 0);

function test_DepositYield RevertIfZeroAmount() public {
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 0, 0, 0);
vm.prank (owner) ;
vault.startPeriod(0);
vm.prank(userl);
vault.lock (1000 * 1lel8);
vm.prank(userl);
vault.invest(0, 100 * 1lel8);
vm.warp(block.timestamp + 8 days);
vm.prank (owner) ;
vault.withdrawInvestments(0);
vm.prank(owner) ;
vm.expectRevert (IInvestmentVault.InvalidAmount.selector);

vault.depositY¥ield(0, 0);

function test WithdrawYield RevertTwice() public {
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 0, 0, 0);
vm.prank (owner) ;
vault.startPeriod(0);
vm.prank(userl);
vault.lock (1000 * 1lel8);
vm.prank(userl);
vault.invest(0, 100 * 1lel8);
vm.warp(block.timestamp + 8 days);
vm.prank(owner) ;
vault.withdrawInvestments(0);
vm.prank (owner) ;
vault.depositYield(0, 100 * 1lel8);
vm.prank(userl);
vault.withdrawYield(0);
vm.prank(userl);
vm.expectRevert (IInvestmentVault.AlreadyClaimed.selector);
vault.withdrawYield(0);

function test_Pause AllUserOpsBlocked() public {
vm.prank (owner) ;
vault.pause();
vm.prank(userl);
vm.expectRevert();
vault.lock (100 * 1lel8);
vm.prank(userl);
vm.expectRevert();
vault.unlock (100 * 1lel8);
vm.prank(userl);
vm.expectRevert();
vault.invest(0, 10 * 1lel8);
vm.prank (userl);
vm.expectRevert();
vault.withdrawYield(0);

Fairyproof

function test_Constructor() public view {
assertEqg(address(vault.lockToken()), address(lockToken));
assertEqg(vault.owner(), owner);

assertEg(vault.periodCount(), 0);

function test_Constructor RevertZeroAddress() public {
vm.expectRevert (IInvestmentVault.InvalidAddress.selector);

new InvestmentVault(address(0), owner);

function test Lock() public {
uint256 amount = 1000 * 1lel8;

vm.prank(userl);

vault.lock(amount);

assertEqg(vault.getUserLocked(userl), amount);
assertEqg(vault.totalLockedTokens (), amount);

assertEgq(lockToken.balanceOf (address(vault)), amount);

function test_Lock RevertZeroAmount() public {
vm.prank (userl);
vm.expectRevert (IInvestmentVault.InvalidAmount.selector);
vault.lock(0);

function test_Unlock() public {
uint256 lockAmount = 1000 * 1lel8;
uint256 unlockAmount = 400 * 1lel8;

vm.prank (userl);
vault.lock(lockAmount) ;

vm.prank(userl);

vault.unlock(unlockAmount) ;

assertEq(vault.getUserLocked(userl), lockAmount - unlockAmount);
assertEqg(vault.totalLockedTokens(), lockAmount - unlockAmount);

function test_Unlock RevertInsufficientBalance() public {
vm.prank(userl);
vault.lock (100 * 1el8);

vm.prank(userl);
vm.expectRevert (IInvestmentVault.InsufficientBalance.selector);
vault.unlock (200 * 1lel8);

function test_CreatePeriod() public {
vm.prank (owner) ;
uint256 periodId = vault.createPeriod(
1000 * lels, // maxTotalLocked
30 days, // periodLength

17/31

InvestmentVault

Fairyproof InvestmentVault

7 days, // investLength

lel7, // fraction (0.1 in lel8 scale)
address (investToken),

500, // 5% fee

2000 * lels, // maxLockPerWallet

300 * lels8 // maxInvestPerWallet

)i

assertEq(periodId, 0);
assertEq(vault.periodCount(), 1);

InvestmentVault.Period memory period = vault.getPeriod(0);
assertEq(period.maxTotalLocked, 1000 * 1lel8);
assertEg(period.periodLength, 30 days);

assertEq(period.investLength, 7 days);

assertEq(period.fraction, 1lel7);

assertEg(period.investToken, address(investToken));
assertEq(period.feePercentage, 500);

assertEq(period.maxLockPerWallet, 2000 * 1lel8);
assertEq(period.maxInvestPerWallet, 300 * 1el8);
assertEg(uint(period.state), uint(IInvestmentVault.PeriodState.INIT));

function test CreatePeriod RevertInvalidParameters() public {
// Zero investLength
vm.prank (owner) ;
vm.expectRevert (IInvestmentVault.InvalidParameters.selector);
vault.createPeriod (1000 * 1el8, 30 days, 0, lel7, address(investToken), 500, 0, 0);

// periodLength < investLength

vm.prank(owner) ;

vm.expectRevert (IInvestmentVault.InvalidParameters.selector);

vault.createPeriod(1000 * 1lel8, 5 days, 7 days, lel7, address(investToken), 500, 0, 0);

// Zero fraction

vm.prank (owner) ;

vm.expectRevert (IInvestmentVault.InvalidParameters.selector);

vault.createPeriod (1000 * 1el8, 30 days, 7 days, 0, address(investToken), 500, 0, 0);

// Fee > 100%

vm.prank (owner) ;

vm.expectRevert (IInvestmentVault.InvalidParameters.selector);

vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 10001, 0, 0);

function test_CreatePeriod RevertNonOwner() public {
vm.prank(userl);
vm.expectRevert();
vault.createPeriod(1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500, 0, 0);

function test_ StartPeriod() public {
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);

vm.prank (owner) ;

vault.startPeriod(0);

assertEq(uint(vault.getPeriodState(0)), uint(IInvestmentVault.PeriodState.INVEST));

18/31

Fairyproof InvestmentVault

InvestmentVault.Period memory period = vault.getPeriod(0);
assertEq(period.startTime, block.timestamp);
assertEg(period.investEndTime, block.timestamp + 7 days);

assertEq(period.periodEndTime, block.timestamp + 30 days);

function test_StartPeriod RevertNotInit() public {
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);

vm.prank(owner) ;

vault.startPeriod(0);

// Try to start again
vm.prank (owner) ;
vm.expectRevert (IInvestmentVault.InvalidState.selector);

vault.startPeriod(0);

function test_Invest() public {
// Setup: Create and start period
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);
vm.prank(owner) ;

vault.startPeriod(0);

// User locks tokens
vm.prank(userl);
vault.lock (1000 * 1lel8);

// User invests (fraction = 0.1, so 1000 locked allows 100 invest)
uint256 investAmount = 100 * 1lel8;
vm.prank(userl);

vault.invest (0, investAmount);

InvestmentVault.UserInvestment memory userInv = vault.getUserInvestment(userl, 0);

assertEg(userInv.amountInvested, investAmount);

InvestmentVault.Period memory period = vault.getPeriod(0);

assertEg(period.totalInvested, investAmount);

function test_Invest Multiple() public {
vm.prank(owner) ;
vault.createPeriod (1000 * 1el8, 30 days, 7 days, lel7, address(investToken), 500,0,0);
vm.prank (owner) ;

vault.startPeriod(0);

vm.prank(userl);
vault.lock (1000 * 1lel8);

// First investment
vm.prank (userl);
vault.invest(0, 50 * 1el8);

// Second investment
vm.prank(userl);
vault.invest(0, 30 * 1lel8);

19/31

Fairyproof InvestmentVault

InvestmentVault.UserInvestment memory userInv = vault.getUserInvestment(userl, 0);

assertEg(userInv.amountInvested, 80 * 1lel8);

function test_Invest RevertInsufficientCollateral() public {
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);
vm.prank (owner) ;

vault.startPeriod(0);

vm.prank(userl);
vault.lock (100 * 1el8);

// Try to invest 20 (requires 200 locked at fraction 0.1)

vm.prank (userl);

vm.expectRevert (IInvestmentVault.InsufficientCollateral.selector);
vault.invest (0, 20 * 1lel8);

function test_Invest RevertAfterInvestWindow() public {
vm.prank(owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);
vm.prank (owner) ;

vault.startPeriod(0);

vm.prank (userl);
vault.lock (1000 * 1el8);

// Warp past invest window - state auto-transitions to INVESTMENT ONGOING

vm.warp(block.timestamp + 8 days);

vm.prank(userl);
vm.expectRevert (IInvestmentVault.InvalidState.selector);
vault.invest(0, 50 * 1el8);

function test Unlock RevertWithActivelInvestment() public {
vm.prank (owner) ;
vault.createPeriod(1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);
vm.prank (owner) ;

vault.startPeriod(0);

vm.prank (userl);
vault.lock(1000 * 1el8);

// Invest 50 (requires 500 locked)
vm.prank(userl);

vault.invest(0, 50 * 1lel8);

// Try to unlock more than allowed

vm.prank (userl);

vm.expectRevert (IInvestmentVault.InsufficientCollateral.selector);
vault.unlock (600 * 1el8);

function test Unlock PartialWithActiveInvestment() public {
vm.prank(owner) ;

vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);

20/31

Fairyproof

vm.prank(owner) ;

vault.startPeriod(0);

vm.prank(userl);
vault.lock (1000 * 1el8);

// Invest 50 (requires 500 locked)
vm.prank(userl);
vault.invest(0, 50 * 1lel8);

// Can unlock up to 500
vm.prank(userl);
vault.unlock (499 * 1lel8);

assertEqg(vault.getUserLocked(userl),

501 * lel8);

function test GetPeriodState AutoTransition() public {

function test_WithdrawInvestments() public {

vm.prank(owner) ;

vault.createPeriod (1000 * 1lel8, 30 days,

vm.prank (owner) ;

vault.startPeriod(0);

7 days,

lel7,

address (investToken),

InvestmentVault

500,0,0);

assertEg(uint(vault.getPeriodState(0)), uint(IInvestmentVault.PeriodState.INVEST));

// Warp past invest window

vm.warp(block.timestamp + 8 days);

// State should auto-transition

assertEq(uint(vault.getPeriodState(0)), uint(IInvestmentVault.PeriodState.INVESTMENT ONGOING));

vm.prank (owner) ;

vault.createPeriod (1000 * 1lel8, 30 days,

vm.prank(owner) ;

vault.startPeriod(0);

vm.prank (userl);
vault.lock (1000 * 1el8);

vm.prank (userl);
vault.invest (0, 100 * 1lel8);

// Warp past invest window

vm.warp(block.timestamp + 8 days);

7 days,

lel7,

uint256 ownerBalBefore = investToken.balanceOf (owner);

vm.prank (owner) ;

vault.withdrawInvestments(0);

address (investToken),

assertEg(investToken.balanceOf (owner), ownerBalBefore + 100 * 1el8);

function test DepositYield() public {

vm.prank(owner) ;

21/31

500,0,0);

Fairyproof InvestmentVault

vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);
vm.prank(owner) ;

vault.startPeriod(0);

vm.prank(userl);
vault.lock (1000 * 1el8);

vm.prank(userl);
vault.invest(0, 100 * 1el8);

// Warp past invest window

vm.warp(block.timestamp + 8 days);

vm.prank (owner) ;

vault.withdrawInvestments(0);

// Deposit yield (principal + 10% profit)
vm.prank (owner) ;
vault.depositY¥ield(0, 110 * 1lel8);

assertEq(uint(vault.getPeriodState(0)), uint(IInvestmentVault.PeriodState.YIELD));

InvestmentVault.Period memory period = vault.getPeriod(0);
assertEq(period.yieldDeposited, 110 * 1el8);

function test WithdrawYield() public {
// Full lifecycle test
vm.prank(owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0); // 5% fee
vm.prank(owner) ;

vault.startPeriod(0);

vm.prank (userl);
vault.lock(1000 * 1el8);

vm.prank(userl);
vault.invest(0, 100 * 1el8);

vm.warp(block.timestamp + 8 days);

vm.prank (owner) ;

vault.withdrawInvestments(0);

// Deposit yield (principal + 10% profit = 110)
vm.prank (owner) ;
vault.depositY¥ield(0, 110 * 1lel8);

uint256 userBalBefore = investToken.balanceOf (userl);

vm.prank(userl);
vault.withdrawYield(0);

// Gross yield = 110, fee = 5.5, net = 104.5
uint256 expectedNet = 110 * 1lel8 - (110 * 1el8 * 500 / 10000);

assertEq(investToken.balanceOf (userl), userBalBefore + expectedNet);

// Check claimed

InvestmentVault.UserInvestment memory userInv = vault.getUserInvestment(userl, 0);

22/31

Fairyproof

function test WithdrawYield RevertAlreadyClaimed() public {

assertTrue(userInv.fullyClaimed);

vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days,
vm.prank (owner) ;

vault.startPeriod(0);

vm.prank(userl);

vault.lock (1000 * 1el8);
vm.prank(userl);
vault.invest (0, 100 * 1lel8);

vm.warp(block.timestamp + 8 days);
vm.prank (owner) ;
vault.withdrawInvestments(0);
vm.prank (owner) ;
vault.depositY¥ield(0, 110 * 1lel8);

vm.prank(userl);
vault.withdrawYield(0);

// Try to claim again

vm.prank(userl);

lel7,

address (investToken),

vm.expectRevert (IInvestmentVault.AlreadyClaimed.selector);

vault.withdrawYield(0);

function test MultiUserYieldDistribution() public {

// maxTotalLocked = 3000, fraction = 0.1, so max investable = 300

vm.prank (owner) ;
vault.createPeriod (3000 * 1lel8, 30 days, 7 days,
vm.prank (owner) ;

vault.startPeriod(0);

// Userl locks and invests 100
vm.prank(userl);

vault.lock (1000 * 1lel8);
vm.prank(userl);
vault.invest(0, 100 * 1lel8);

// User2 locks and invests 200
vm.prank (user2);
vault.lock(2000 * 1el8);
vm.prank(user2);
vault.invest(0, 200 * 1lel8);

vm.warp(block.timestamp + 8 days);

vm.prank(owner) ;

vault.withdrawInvestments(0);

// Total invested: 300, deposit yield: 330 (10% profit)

vm.prank(owner) ;
vault.depositY¥ield(0, 330 * 1lel8);

// Userl: 100/300 * 330 = 110, fee 5% = 5.5, net

lel7,

address (investToken),

= 104.5

InvestmentVault

500,0,0);

500,0,0);

(uint256 grossl, uint256 netl, uint256 feel) = vault.calculateUserYield(userl, 0);

23[31

Fairyproof InvestmentVault

assertEqg(grossl, 110 * 1lel8);
assertEq(feel, 55 * lel7); // 5.5
assertEq(netl, 1045 * lel7); // 104.5

// User2: 200/300 * 330 = 220, fee 5% = 11, net = 209

(uint256 gross2, uint256 net2, uint256 fee2) = vault.calculateUserYield(user2, 0);
assertEq(gross2, 220 * l1lel8);

assertEq(fee2, 11 * 1el8);

assertEqg(net2, 209 * lel8);

function test FinalizePeriod() public {
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);
vm.prank (owner) ;
vault.startPeriod(0);

vm.prank(userl);

vault.lock (1000 * 1lel8);
vm.prank(userl);
vault.invest (0, 100 * 1lel8);

vm.warp(block.timestamp + 8 days);
vm.prank (owner) ;
vault.withdrawInvestments(0);
vm.prank (owner) ;
vault.depositY¥ield(0, 110 * 1lel8);

vm.prank(owner) ;

vault.finalizePeriod(0);

assertEg(uint(vault.getPeriodState(0)), uint(IInvestmentVault.PeriodState.FINALISED));

function test_SequentialPeriods() public {
// Create first period
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);
vm.prank (owner) ;

vault.startPeriod(0);

// User makes an investment so we can complete the period
vm.prank(userl);

vault.lock (1000 * 1el8);

vm.prank(userl);

vault.invest (0, 100 * 1lel8);

// Create second period (in INIT)
vm.prank(owner) ;

vault.createPeriod (2000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);

// Cannot start second period while first is active
vm.prank (owner) ;
vm.expectRevert (IInvestmentVault.PreviousPeriodNotFinalised.selector);

vault.startPeriod(1l);

// Complete first period
vm.warp(block.timestamp + 8 days);

vm.prank(owner) ;

24[31

Fairyproof

vault.withdrawInvestments(0);

vm.prank(owner) ;

vault.depositYield(0, 100 * 1lel8); // Return principal
vm.prank (owner) ;

vault.finalizePeriod(0);

// Now can start second period
vm.prank(owner) ;

vault.startPeriod(1);

InvestmentVault

assertEq(uint(vault.getPeriodState(1l)), uint(IInvestmentVault.PeriodState.INVEST));

function test_WithdrawFees() public {

vm.prank (owner) ;
vault.createPeriod (1000 * 1el8, 30 days, 7 days, lel7,
vm.prank (owner) ;

vault.startPeriod(0);

vm.prank(userl);

vault.lock (1000 * 1lel8);
vm.prank (userl);
vault.invest(0, 100 * 1lel8);

vm.warp(block.timestamp + 8 days);
vm.prank (owner) ;
vault.withdrawInvestments(0);
vm.prank(owner) ;
vault.depositY¥ield(0, 110 * 1lel8);

vm.prank(userl);
vault.withdrawYield(0);

// Check collected fees

address (investToken),

uint256 fees = vault.collectedFees(address(investToken));

assertEq(fees, 55 * lel7); // 5.5
address feeRecipient = address(100);
vm.prank (owner) ;

vault.withdrawFees (address(investToken), feeRecipient,

assertEg(investToken.balanceOf (feeRecipient), fees);

assertEg(vault.collectedFees (address(investToken)), 0);

function test_ Pause() public {

vm.prank(owner) ;

vault.pause();

vm.prank(userl);
vm.expectRevert();
vault.lock (100 * 1el8);

function test_Unpause() public {

vm.prank(owner) ;

vault.pause();

25/31

fees);

500,0,0);

Fairyproof InvestmentVault

vm.prank(owner) ;

vault.unpause();

vm.prank(userl);
vault.lock (100 * 1el8);
assertEqg(vault.getUserLocked(userl), 100 * 1el8);

function test_GetUnlockableBalance() public {
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);
vm.prank (owner) ;

vault.startPeriod(0);

vm.prank(userl);
vault.lock (1000 * 1lel8);

// Before investment, all is unlockable

assertEqg(vault.getUnlockableBalance(userl), 1000 * 1el8);

// After investing 50 (requires 500 locked)
vm.prank(userl);
vault.invest(0, 50 * 1el8);

assertEqg(vault.getUnlockableBalance(userl), 500 * 1el8);
assertEq(vault.getRequiredLocked(userl), 500 * 1el8);

function test DepositYield MultipleCalls() public {
vm.prank(owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);
vm.prank (owner) ;

vault.startPeriod(0);

vm.prank(userl);

vault.lock (1000 * 1el8);
vm.prank(userl);
vault.invest (0, 100 * 1el8);

vm.warp(block.timestamp + 8 days);

vm.prank (owner) ;

vault.withdrawInvestments(0);

vm.prank(owner) ;
vault.depositY¥ield(0, 110 * 1lel8);

vm.prank(owner) ;
vm.expectRevert (IInvestmentVault.InvalidState.selector);
vault.depositY¥ield(0, 120 * 1lel8);

function test_WithdrawInvestments_MultipleCalls_Revert() public {
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);
vm.prank (owner) ;

vault.startPeriod(0);

vm.prank(userl);

26/31

Fairyproof InvestmentVault

vault.lock(1000 * 1el8);
vm.prank(userl);
vault.invest (0, 100 * 1lel8);

vm.warp(block.timestamp + 8 days);

vm.prank (owner) ;

vault.withdrawInvestments(0);

vm.prank(owner) ;

vm.expectRevert (IInvestmentVault.InvalidState.selector);

vault.withdrawInvestments(0);

function test WithdrawInvestments MultipleCalls WithExtraBalance Revert() public {
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 500,0,0);
vm.prank (owner) ;

vault.startPeriod(0);

vm.prank(userl);

vault.lock (1000 * 1lel8);
vm.prank(userl);

vault.invest (0, 100 * 1lel8);
vm.warp(block.timestamp + 8 days);

investToken.mint (address(vault), 100 * 1el8);
uint256 ownerBalBefore = investToken.balanceOf (owner);

vm.prank (owner) ;
vault.withdrawInvestments(0);

assertEq(investToken.balanceOf (owner), ownerBalBefore + 100 * 1el8);

vm.prank(owner) ;
vm.expectRevert (IInvestmentVault.InvalidState.selector);

vault.withdrawInvestments(0);

function test_WithdrawInvestments MultipleCalls_SameToken Revert() public {
// use lockToken as investToken
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(lockToken), 500, 0, 0);
vm.prank (owner) ;
vault.startPeriod(0);
// userl lock and invest
vm.prank(userl);
vault.lock (1000 * 1el8);
vm.prank (userl);
vault.invest(0, 100 * 1lel8);
// skip to withdraw time
vm.warp(block.timestamp + 8 days);
// mint invest tokens to the vault
lockToken.mint (address(vault), 100 * 1el8);
uint256 ownerBalBefore = lockToken.balanceOf (owner);
// first withdraw
vm.prank (owner) ;
vault.withdrawInvestments(0);
assertEqg(lockToken.balanceOf (owner), ownerBalBefore + 100 * 1el8);
// second call should revert
vm.prank (owner) ;
vm.expectRevert (IInvestmentVault.InvalidState.selector);

vault.withdrawInvestments(0);

27/31

Fairyproof InvestmentVault

function test_CancelPeriod EmergencyWithdraw() public {
vm.prank (owner) ;
vault.createPeriod (1000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 0, 0, 0);
vm.prank (owner) ;
vault.startPeriod(0);
vm.prank(userl);
vault.lock (1000 * 1lel8);
vm.prank(userl);
vault.invest(0, 100 * 1el8);
vm.prank (owner) ;
vault.cancelPeriod(0);
uint256 userBalBefore = investToken.balanceOf (userl);
vm.prank (userl);
vault.emergencyWithdrawInvestment(0);
assertEg(investToken.balanceOf (userl), userBalBefore + 100 * 1lel8);
// emergencyWithdrawInvestment again shoule be reverteds
vm.prank(userl);
vm.expectRevert (IInvestmentVault.AlreadyClaimed.selector);

vault.emergencyWithdrawInvestment(0);

function test MaxInvestPerWallet Bypass_ Issue() public {
// pre period with no maxInvestPerWallet
vm.prank (owner) ;
vault.createPeriod (10000 * 1el8, 30 days, 7 days, lel7, address(investToken), 0, 0, 0); // no cap
vm.prank (owner) ;
vault.startPeriod(0);
vm.prank(userl);
vault.lock (5000 * 1lel8);
// Invest 1 token to ensure amount > 0
vm.prank(userl);
vault.invest (0, 1);
// Move to next period
vm.warp(block.timestamp + 8 days);
vm.prank (owner) ;
vault.withdrawInvestments(0);
vm.prank(owner) ;
vault.depositYield(0, 1); // deposit minimal yield
vm.prank(owner) ;
vault.finalizePeriod(0);
// This period has a smaller maxInvestPerWallet
vm.prank (owner) ;
vault.createPeriod(10000 * 1lel8, 30 days, 7 days, lel7, address(investToken), 0, 0, 100 * 1lel8);
vm.prank(owner) ;
vault.startPeriod(1);
// Users do not need to lock again, they can invest directly
vm.prank(userl);
vault.invest(1l, 100 * lel8); // normal
// Attempt to invest over the cap, should revert
vm.prank(userl);
vm.expectRevert (IInvestmentVault.ExceedsWalletInvestCap.selector);
vault.invest(l, 200 * 1lel8);

28/31

Fairyproof

2. UnitTestOutput

Ran 46 tests for test/InvestmentVault.t.sol:InvestmentVaultTest

[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

Suite result:

Ran 1 test suite in 130.41lms (3.75ms CPU time): 46 tests passed,

test_CancelPeriod_EmergencyWithdraw() (gas: 529852)
21405)

test_Constructor_ RevertZeroAddress() (gas: 96282)
257700)

test_CreatePeriod_RevertInvalidParameters()

test Constructor() (gas:

test CreatePeriod() (gas:
(gas:
21467)

52553)
test CreatePeriod RevertNonOwner ()
test DepositYield() (gas: 595566)
test DepositYield MultipleCalls() 589506)

test DepositYield RevertIfLessThanPrincipal() 503961)
test_DepositYield RevertIfNotWithdrawn() (gas: 492414)
test_DepositYield RevertIfZeroAmount() (gas: 501888)
test_FinalizePeriod() (gas: 592042)

test GetPeriodState AutoTransition() (gas: 303412)
test_GetUnlockableBalance() 525588)

test Invest() (gas: 521070)

test Invest LastMoment UnlockAllAfterInvestWindow() (gas: 467132)
test Invest Multiple() (gas: 535791)

test_Invest RevertAfterInvestWindow() (gas: 411826)

test Invest RevertIfCollateralJustEnough() 394630)
test_Invest RevertInsufficientCollateral() 415058)
test_Lock() (gas: 123693)
test_Lock_ RevertZeroAmount ()

(gas:

(gas:

(gas:

(gas:

(gas:
(gas:
(gas: 23238)

447386)

test _MaxInvestPerWallet Bypass_Issue() (gas: 929873)
test MultiUserYieldDistribution() (gas: 706506)

test MultiUser ImbalancedInvestments() (gas: 682990)
test Pause() 53454)

test Pause AllUserOpsBlocked() 86746)

test SequentialPeriods() (gas: 877745)
test_StartPeriod() 313556)
test_StartPeriod_ RevertNotInit()
test_Unlock() 137458)

test _Unlock PartialWithActiveInvestment() (gas: 529192)
test Unlock RevertIfCollateralRequired() (gas: 496893)
test Unlock RevertInsufficientBalance() (gas: 121539)
test Unlock RevertWithActiveInvestment() (gas: 516133)
test Unpause() 130808)

test WithdrawFees() 661200)

test WithdrawInvestments() (gas: 517971)
test_WithdrawInvestments MultipleCalls_Revert()

test MEV_TemporaryCollateral() (gas:

(gas:

(gas:

(gas:
(gas: 298793)

(gas:

(gas:
(gas:
(gas: 524997)

test_WithdrawInvestments MultipleCalls_SameToken Revert() (gas: 548724)

test WithdrawInvestments MultipleCalls_WithExtraBalance Revert() (gas: 562736)
test WithdrawYield() (gas: 660534)

test WithdrawYield RevertAlreadyClaimed() (gas: 663560)

test WithdrawYield RevertIfNoDepositYield() 505170)

test WithdrawYield RevertTwice()

ok. 0 failed;

(gas:
(gas: 594089)

46 passed; 0 skipped; finished in 3.75ms (13.44ms CPU time)

0 failed,

29/31

InvestmentVault

0 skipped (46 total tests)

11.2 External Functions Check Points

1. InvestmentVault.sol_check_point.md

File: src/InvestmentVault.sol

contract: InvestmentVault is linvestmentVault, Ownable2Step, ReentrancyGuard, Pausable

(Empty fields in the table represent things that are not required or relevant)

: - . Param Unit
Index Function StateMutability Modifier IsUserlInterface
Check Test
1 createPeriod(uint256,uint256,uint256,uint256,address,uint256,uint256,uint256) onlyOwner Passed
2 startPeriod(uint256) onlyOwner Passed
. . onlyOwner,
3 withdrawInvestments(uint256) Passed
nonReentrant
s . . onlyOwner,
4 depositYield(uint256,uint256) Passed
nonReentrant
5 finalizePeriod(uint256) onlyOwner Passed
lyOwner,
6 withdrawFees(address,address,uint256) SR-YOWRer Passed
nonReentrant
7 pause() onlyOwner Passed
8 unpause() onlyOwner Passed
1yOr ’
9 cancelPeriod(uint256) on-yowner Passed
nonReentrant
. nonReentrant,
10 lock(uint256) Yes Passed
whenNotPaused
) nonReentrant,
1M unlock(uint256) Yes Passed
whenNotPaused
. . . nonReentrant,
12 invest(uint256,uint256) Yes Passed
whenNotPaused
R E, Bp
13 withdrawYield(uint256) nopReentran Yes Passed
whenNotPaused
.) nonReentrant,
14 emergencyWithdrawInvestment(uint256) Yes Passed
whenNotPaused
15 getPeriodState(uint256) view Passed
16 getPeriod(uint256) view Passed
17 getUserInvestment(address,uint256) view Passed
18 getUserLocked(address) view Passed
19 getUnlockableBalance(address) view Passed
20 getRequiredLocked(address) view Passed

21 calculateUserYield(address,uint256) view Passed

Miscellaneous

FAIRYPROOF

https://medium.com/@FairyproofT
https://twitter.com/FairyproofT
https://www.linkedin.com/company/fairyproof-tech

https://t.me/Fairyproof_tech

006086

Reddit: https://www.reddit.com/user/FairyproofTech

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to Singularry
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08. List of issues by severity
	09. Issue descriptions
	10. Recommendations to enhance the overall security
	11. Appendices
	11.1 Unit Test
	1. InvestmentVault.t.sol
	2. UnitTestOutput

	11.2 External Functions Check Points
	1. InvestmentVault.sol_check_point.md
	File: src/InvestmentVault.sol

