
Investment Vault

Version 1.0.0

Serial No. 2025122100012018

Presented by Fairyproof

December 21, 2025

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Singularry InvestmentVault project.

Audit Start Time:

December 19, 2025

Audit End Time:

December 21, 2025

Audited Code's Github Repository:

https://github.com/singularry/sly-investment-vault/

Audited Code's Github Commit Number When Audit Started:

b1ff722129ab4eb4de2ccae49ba77abd4ba06bbe

Audited Code's Github Commit Number When Audit Ended:

ed6fd40aacce1367c10f01822b04c10e37692ce7

The goal of this audit is to review Singularry’s solidity implementation for its InvestmentVault function, study potential security
vulnerabilities, its general design and architecture, and uncover bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as general observations that
traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Singularry team for specified versions.
Whenever the code, software, materials, settings, environment etc is changed, the comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding of known security patterns
and state of the art regarding system security. You agree that your access and/or use, including but not limited to any
associated services, products, protocols, platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming language, or other
programming aspects that could present security risks. If the audited source files are smart contract files, risks or issues
introduced by using data feeds from offchain sources are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further testing and audit is
recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with this report, its
content, and the related services and products and your use thereof, including, without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or offered by a third
party through the product, any open source or third-party software, code, libraries, materials, or information linked to, called
by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked
websites, any websites or mobile applications appearing on any advertising, and we will not be a party to or in any way be
responsible for monitoring any transaction between you and any third-party providers of products or services.

Fairyproof InvestmentVault

2/312/31

https://github.com/singularry/sly-investment-vault/

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED
SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX,
LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its specifications were
implemented. The codebase was then subject to deep analysis and scrutiny, resulting in a series of observations. The
problems and their potential solutions are discussed in this document and, whenever possible, we identify common sources
for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code Review, Including:

Project Diagnosis

Understanding the size, scope and functionality of your project’s source code based on the specifications, sources, and
instructions provided to Fairyproof.

Manual Code Review

Reading your source code line-by-line to identify potential vulnerabilities.

Specification Comparison

Determining whether your project’s code successfully and efficiently accomplishes or executes its functions according to the
specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:

Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or executed when test cases are
run.

Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to execute its functions.

3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest established industry and
academic practices, recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is assigned a severity level based
on the potential impact of the issue and recommendations to fix it, if applicable. For ease of navigation, an index by topic and
another by severity are both provided at the beginning of the report.

— Documentation
For this audit, we used the following source(s) of truth about how the token issuance function should work:

Website:https://singularry.org/

Source Code: https://github.com/singularry/sly-investment-vault/

Fairyproof InvestmentVault

3/313/31

https://singularry.org/
https://github.com/singularry/sly-investment-vault/

Serial Number Auditor Audit Time Result

2025122100012018 Fairyproof Security Team Dec 19, 2025 - Dec 21, 2025 Low Risk

These were considered the specification, and when discrepancies arose with the actual code behavior, we consulted with the
Singularry team or reported an issue.

— Comments from Auditor

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project. During the audit, one issue of
high-severity, three issues of medium-severity, three issues of low-severity and one issue of info-severity were uncovered. The
Singularry team fixed one issue of high, three issues of medium, two issues of low and one issue of info, and acknowledged
the remaining issues.

02. About Fairyproof
Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits for organizations.
Fairyproof has developed industry security standards for designing and deploying blockchain applications.

03. Introduction to Singularry
Singularry is a platform of creating next-generation financial systems with intelligent, autonomous protocols and seamless
cross-chain operations.

The above description is quoted from relevant documents of Singularry.

04. Major functions of audited code

Fairyproof InvestmentVault

4/314/31

https://www.fairyproof.com/

The InvestmentVault contract implements a token locking and investment protocol with periodic yield distribution. Users lock
tokens as collateral to gain eligibility for investment during defined periods. Each period has configurable parameters such as
maximum total locked tokens, investment window, per-wallet caps, and yield distribution rules. The contract enforces state
transitions for each period (INIT, INVEST, INVESTMENT_ONGOING, WITHDRAWN, YIELD, FINALISED, CANCELLED), manages
user collateral and investments, and allows the owner to withdraw invested funds, deposit yield, and handle emergency
cancellations. All user and admin actions are subject to strict checks to ensure fairness, cap enforcement, and secure fund
management.

Note:

This contract is designed for scenarios where user investment principal is withdrawn from the contract for off-chain or
external investment activities to generate yield, rather than being continuously held within the contract.

05. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited to the following ones:

Access Control

Admin Rights

Arithmetic Precision

Code Improvement

Contract Upgrade/Migration

Delete Trap

Design Vulnerability

DoS Attack

EOA Call Trap

Fake Deposit

Function Visibility

Gas Consumption

Implementation Vulnerability

Inappropriate Callback Function

Injection Attack

Integer Overflow/Underflow

IsContract Trap

Miner's Advantage

Misc

Price Manipulation

Proxy selector clashing

Pseudo Random Number

Re-entrancy Attack

Replay Attack

Fairyproof InvestmentVault

5/315/31

Rollback Attack

Shadow Variable

Slot Conflict

Token Issuance

Tx.origin Authentication

Uninitialized Storage Pointer

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at some point in the
future.

Informational is not an issue or risk but a suggestion for code improvement.

07. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks related to the following
functions or areas.

- Function Implementation
We checked whether or not the functions were correctly implemented.
We found some issues, for more details please refer to [FP-3,FP-4,FP-5,FP-7,FP-8] in "09. Issue description".

- Access Control
We checked each of the functions that could modify a state, especially those functions that could only be accessed by owner
or administrator
We didn't find issues or risks in these functions or areas at the time of writing.

Fairyproof InvestmentVault

6/316/31

Index Title Issue/Risk Severity Status

FP-1 Trust Assumptions Admin Rights Low Acknowledged

FP-2 Multiple Withdrawals of Investments Design Vulnerability High ✓ Fixed

FP-3
No Emergency Withdrawal or Period Termination

Mechanism
Design Vulnerability Medium ✓ Fixed

FP-4 Investment Window Fairness Issue Design Vulnerability Medium ✓ Fixed

FP-5 No Minimum Yield Deposit Validation Design Vulnerability Medium ✓ Fixed

FP-6 Period State Machine Enforcement Weakness Design Vulnerability Low ✓ Fixed

FP-7
Inconsistent Cap Parameters May Cause User

Confusion
Design Vulnerability Low ✓ Fixed

FP-8 State Management Consistency Design Vulnerability Info ✓ Fixed

- Token Issuance & Transfer
We examined token issuance and transfers for situations that could harm the interests of holders.
We didn't find issues or risks in these functions or areas at the time of writing.

- State Update
We checked some key state variables which should only be set at initialization.
We found one issue, for more details please refer to [FP-2] in "09. Issue description".

- Asset Security
We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous
We checked the code for optimization and robustness.
We found some issues, for more details please refer to [FP-1,FP-6] in "09. Issue description".

08. List of issues by severity

09. Issue descriptions

[FP-1] Trust Assumptions

Admin Rights Low Acknowledged

Issue/Risk: Admin Rights

Fairyproof InvestmentVault

7/317/31

Description:

Users must trust the admin for all critical operations.

Admin must return invested funds (no guaranteed minimum yield)

Admin must complete the period lifecycle in reasonable time

Admin must not pause the contract indefinitely

Admin must set fair fee percentages

Admin must use legitimate ERC20 tokens for investments

Recommendation:

Disclose trust assumptions clearly in documentation and UI. Consider governance or multi-signature admin for risk mitigation.

Update:

Risk acknowledged. Disclosure recommended.

Status:

The project team is already aware of this and plans to explain it in detail in the documentation.

[FP-2] Multiple Withdrawals of Investments

Design Vulnerability High ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

The admin can call withdrawInvestments multiple times for the same period, extracting the invested funds repeatedly as long
as the contract balance allows. This is a critical business logic vulnerability.
After the first withdrawal, the period state remains INVESTMENT_ONGOING, allowing repeated withdrawals. This can result in
loss of user funds and protocol insolvency.

This risk is especially severe if investToken and lockToken are the same, as repeated withdrawals can quickly drain the
contract’s balance and cause accounting inconsistencies.
Relevant code:

Recommendation:

Introduce a new state (e.g., WITHDRAWN) in PeriodState and set it after the first withdrawal. Subsequent calls should revert
if the state is not INVESTMENT_ONGOING . This ensures only one withdrawal per period and prevents repeated fund extraction.

Update:

The project team add period.state = PeriodState.WITHDRAWN; in withdrawInvestments. So the period state is set to
WITHDRAWN , and any further calls to withdrawInvestments for the same period will revert.
This resolves the vulnerability and ensures correct state transitions regardless of token configuration.

Status:

function withdrawInvestments(uint256 periodId) external onlyOwner nonReentrant {

 // ...existing code...
 if (currentState != PeriodState.INVESTMENT_ONGOING) revert InvalidState();
 // ...existing code...
 IERC20(period.investToken).safeTransfer(msg.sender, amount);
 // ...existing code...
}

Fairyproof InvestmentVault

8/318/31

Fixed at commit 12aecac574961ffc3894d1ee1be14384b7ee86b8.

[FP-3] No Emergency Withdrawal or Period Termination
Mechanism

Design Vulnerability Medium ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

There is no emergency withdrawal or forced period termination mechanism. Users are fully dependent on the admin to
finalize periods and return funds.
If the admin sets an excessively long period or fails to complete the period lifecycle, user funds may be locked indefinitely.
Relevant code:

Recommendation:

Add reasonable bounds for periodLength and investLength. Consider adding an emergency admin or user-triggered period
termination function.

Update:

The project team added the cancelPeriod function to cancel investments in specific scenarios, allowing users to withdraw
their funds.

Status:

Fixed at commit 12aecac574961ffc3894d1ee1be14384b7ee86b8.

[FP-4] Investment Window Fairness Issue

Design Vulnerability Medium ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

Users can invest at the last moment of the investment window, resulting in minimal lock time, while early investors are locked
for longer.
This mechanism allows “tail-end” investors to avoid long lock periods, which is unfair to early participants and may encourage
MEV/arbitrage behavior.
Relevant code:

Recommendation:

function createPeriod(uint256 maxTotalLocked, uint256 periodLength, ...) external onlyOwner returns

(uint256 periodId) {

 // ...existing code...
 // No upper bound check for periodLength
}

function invest(uint256 periodId, uint256 amount) external nonReentrant whenNotPaused {

 // ...existing code...
 if (block.timestamp > period.investEndTime) revert InvestWindowClosed();
 // ...existing code...
}

Fairyproof InvestmentVault

9/319/31

Disclose this risk in documentation. Consider mechanisms to equalize lock duration if business requires fairness.

Update:

The project team has addressed the "Investment Window Fairness" issue by introducing a maxTotalLocked cap for each
period. This ensures that once the cap is reached, no further investments can be made, preventing latecomers from exploiting
the system by locking tokens only at the end of the window. While early users may still need to lock their tokens slightly earlier
than strictly necessary, the team clarified that no funds are actually invested until the investment window closes, and in
practice, the investment window will be kept very short. This minimizes the impact of early locking and ensures fairer
participation for all users. The risk of unfair advantage due to timing is now considered low and mitigated by both the cap and
operational policy.

Status:

Fixed at commit 12aecac574961ffc3894d1ee1be14384b7ee86b8.

[FP-5] No Minimum Yield Deposit Validation

Design Vulnerability Medium ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

Admin can deposit less yield than the total invested principal, resulting in user losses.
There is no check to ensure the deposited yield covers the total principal. This allows the admin to return less than the
invested amount, causing user losses.
Relevant code:

Recommendation:

Add a check: require(amount >= period.totalInvested, "Yield must cover principal");
If business allows losses, disclose this risk clearly to users.

Update:

The project team added a amount validation in depositYield :

Status:

Fixed at commit 12aecac574961ffc3894d1ee1be14384b7ee86b8.

[FP-6] Period State Machine Enforcement Weakness

Design Vulnerability Low ✓ Fixed

Issue/Risk: Design Vulnerability

function depositYield(uint256 periodId, uint256 amount) external onlyOwner nonReentrant {

 // ...existing code...
 // No minimum principal check
 IERC20(period.investToken).safeTransferFrom(msg.sender, address(this), amount);
 // ...existing code...
}

// Ensure yield covers at least the principal (user protection)

if (amount < period.totalInvested) revert InsufficientYieldDeposit();

Fairyproof InvestmentVault

10/3110/31

Description:

Insufficient enforcement of period state transitions allows certain admin operations (e.g., depositYield) to be called out of
order, potentially breaking the intended lifecycle.

The contract should strictly require that depositYield can only be called after withdrawInvestments (i.e., when the period is
in INVESTMENT_ONGOING state). However, the current implementation may allow depositYield to be called prematurely, if
only relying on auto state transitions via getPeriodState . This can lead to inconsistent period states and unexpected
behavior.
Relevant code:

Recommendation:

Introduce a dedicated state (e.g., WITHDRAWN) in the PeriodState enum.
After a successful withdrawInvestments, set the period state to WITHDRAWN.
Require that depositYield can only be called when the period is in the WITHDRAWN state, not merely INVESTMENT_ONGOING .
This ensures strict separation of the withdrawal and yield deposit phases, prevents multiple withdrawals or out-of-order
operations, and enforces a robust state machine for the period lifecycle.

Update:

Project team introduces a new period state (WITHDRAWN) and while calling withdrawInvestments, set the period state to
WITHDRAWN

Status:

Fixed at commit 12aecac574961ffc3894d1ee1be14384b7ee86b8.

[FP-7] Inconsistent Cap Parameters May Cause User Confusion

Design Vulnerability Low ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

If both maxLockPerWallet and maxInvestPerWallet are set, but the lock cap is insufficient to support the maximum investment
(i.e., maxLockPerWallet < maxInvestPerWallet * 1e18 / fraction), users may be unable to reach the maximum allowed
investment even if they reach their lock cap. This could lead to confusion or failed investment attempts.

Recommendation:

Add a parameter consistency check in reatePeriod to ensure that, when both caps are set, maxLockPerWallet is always
sufficient to support maxInvestPerWallet according to the fraction .

Update:

The project team added a cap consistency validation in createPeriod:

function depositYield(uint256 periodId, uint256 amount) external onlyOwner nonReentrant {

 // ...existing code...
 // Should strictly require: period.state == PeriodState.INVESTMENT_ONGOING
 // ...existing code...
}

if (maxLockPerWallet > 0 && maxInvestPerWallet > 0) {

 uint256 requiredLockForMaxInvest = (maxInvestPerWallet * FRACTION_SCALE) / fraction;
 if (maxLockPerWallet < requiredLockForMaxInvest) revert InconsistentCapParameters();
}

Fairyproof InvestmentVault

11/3111/31

Status:

Fixed at commit ed6fd40aacce1367c10f01822b04c10e37692ce7.

[FP-8] State Management Consistency

Design Vulnerability Info ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

State transitions and updates are sometimes performed after reading state, rather than in a unified, atomic manner.
For best practice, state changes should be managed and updated in a single step to avoid inconsistencies and potential race
conditions.

Recommendation:

Refactor state management to ensure atomic updates and transitions, especially for period state changes.

Update:

The project team did not use a unified function approach, but they have handled state transitions correctly.

Status:

Fixed at commit 12aecac574961ffc3894d1ee1be14384b7ee86b8.

10. Recommendations to enhance the overall
security

We list some recommendations in this section. They are not mandatory but will enhance the overall security of the system if
they are adopted.

Consider managing the owner's access control with great care and transfering it to a multi-sig wallet or DAO when
necessary.

11. Appendices

11.1 Unit Test

1. InvestmentVault.t.sol

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.28;

import {InvestmentVault} from "../src/InvestmentVault.sol";

import {IInvestmentVault} from "../src/interfaces/IInvestmentVault.sol";

Fairyproof InvestmentVault

12/3112/31

import {Test} from "forge-std/Test.sol";

import {IERC20} from "@openzeppelin-contracts/token/ERC20/IERC20.sol";

import {ERC20} from "@openzeppelin-contracts/token/ERC20/ERC20.sol";

contract MockERC20 is ERC20 {

 constructor(string memory name, string memory symbol) ERC20(name, symbol) {}

 function mint(address to, uint256 amount) external {
 _mint(to, amount);
 }
}

contract InvestmentVaultTest is Test {

 InvestmentVault vault;
 MockERC20 lockToken;
 MockERC20 investToken;

 address owner = address(1);
 address user1 = address(2);
 address user2 = address(3);

 uint256 constant FRACTION_SCALE = 1e18;

 function setUp() public {
 lockToken = new MockERC20("Lock Token", "LOCK");
 investToken = new MockERC20("USDT", "USDT");

 vm.prank(owner);
 vault = new InvestmentVault(address(lockToken), owner);

 // Mint tokens to users
 lockToken.mint(user1, 10000 * 1e18);
 lockToken.mint(user2, 10000 * 1e18);
 investToken.mint(user1, 10000 * 1e18);
 investToken.mint(user2, 10000 * 1e18);
 investToken.mint(owner, 100000 * 1e18);

 // Approve vault
 vm.prank(user1);
 lockToken.approve(address(vault), type(uint256).max);
 vm.prank(user1);
 investToken.approve(address(vault), type(uint256).max);
 vm.prank(user2);
 lockToken.approve(address(vault), type(uint256).max);
 vm.prank(user2);
 investToken.approve(address(vault), type(uint256).max);
 vm.prank(owner);
 investToken.approve(address(vault), type(uint256).max);
 }

 // ============ Custom Supplementary Tests ============

 function test_Invest_LastMoment_UnlockAllAfterInvestWindow() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500, 0, 0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);

Fairyproof InvestmentVault

13/3113/31

 vm.warp(block.timestamp + 7 days - 1);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);

 vm.warp(block.timestamp + 2);
 vm.prank(user1);
 vault.unlock(1000 * 1e18);
 assertEq(vault.getUserLocked(user1), 0);
 }

 function test_DepositYield_RevertIfLessThanPrincipal() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 0, 0, 0);
 vm.prank(owner);
 vault.startPeriod(0);
 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);
 vm.warp(block.timestamp + 8 days);
 vm.prank(owner);
 vault.withdrawInvestments(0);
 vm.prank(owner);
 vm.expectRevert(IInvestmentVault.InsufficientYieldDeposit.selector);
 vault.depositYield(0, 80 * 1e18);
 }

 function test_WithdrawYield_RevertIfNoDepositYield() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 0, 0, 0);
 vm.prank(owner);
 vault.startPeriod(0);
 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);
 vm.warp(block.timestamp + 8 days);
 vm.prank(owner);
 vault.withdrawInvestments(0);
 vm.prank(user1);
 vm.expectRevert(IInvestmentVault.InvalidState.selector);
 vault.withdrawYield(0);
 }

 function test_MultiUser_ImbalancedInvestments() public {
 vm.prank(owner);
 vault.createPeriod(3000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 0, 0, 0);
 vm.prank(owner);
 vault.startPeriod(0);
 vm.prank(user1);
 vault.lock(3000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 299 * 1e18);
 vm.prank(user2);
 vault.lock(10 * 1e18);
 vm.prank(user2);
 vault.invest(0, 1 * 1e18);
 vm.warp(block.timestamp + 8 days);
 vm.prank(owner);

Fairyproof InvestmentVault

14/3114/31

 vault.withdrawInvestments(0);
 vm.prank(owner);
 vault.depositYield(0, 300 * 1e18);
 (uint256 gross1,,) = vault.calculateUserYield(user1, 0);
 (uint256 gross2,,) = vault.calculateUserYield(user2, 0);
 assertEq(gross1, 299 * 1e18);
 assertEq(gross2, 1 * 1e18);
 }

 function test_Invest_RevertIfCollateralJustEnough() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 0, 0, 0);
 vm.prank(owner);
 vault.startPeriod(0);
 vm.prank(user1);
 vault.lock(99 * 1e18);
 vm.prank(user1);
 vm.expectRevert(IInvestmentVault.InsufficientCollateral.selector);
 vault.invest(0, 100 * 1e18);
 }

 function test_Unlock_RevertIfCollateralRequired() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 0, 0, 0);
 vm.prank(owner);
 vault.startPeriod(0);
 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);
 vm.prank(user1);
 vm.expectRevert(IInvestmentVault.InsufficientCollateral.selector);
 vault.unlock(1000 * 1e18);
 }

 function test_DepositYield_RevertIfNotWithdrawn() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 0, 0, 0);
 vm.prank(owner);
 vault.startPeriod(0);
 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);
 vm.warp(block.timestamp + 8 days);
 vm.prank(owner);
 vm.expectRevert(IInvestmentVault.InvalidState.selector);
 vault.depositYield(0, 100 * 1e18);
 }

 function test_MEV_TemporaryCollateral() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 0, 0, 0);
 vm.prank(owner);
 vault.startPeriod(0);
 vm.warp(block.timestamp + 7 days - 1);
 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);
 vm.warp(block.timestamp + 2);

Fairyproof InvestmentVault

15/3115/31

 vm.prank(user1);
 vault.unlock(1000 * 1e18);
 assertEq(vault.getUserLocked(user1), 0);
 }

 function test_DepositYield_RevertIfZeroAmount() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 0, 0, 0);
 vm.prank(owner);
 vault.startPeriod(0);
 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);
 vm.warp(block.timestamp + 8 days);
 vm.prank(owner);
 vault.withdrawInvestments(0);
 vm.prank(owner);
 vm.expectRevert(IInvestmentVault.InvalidAmount.selector);
 vault.depositYield(0, 0);
 }

 function test_WithdrawYield_RevertTwice() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 0, 0, 0);
 vm.prank(owner);
 vault.startPeriod(0);
 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);
 vm.warp(block.timestamp + 8 days);
 vm.prank(owner);
 vault.withdrawInvestments(0);
 vm.prank(owner);
 vault.depositYield(0, 100 * 1e18);
 vm.prank(user1);
 vault.withdrawYield(0);
 vm.prank(user1);
 vm.expectRevert(IInvestmentVault.AlreadyClaimed.selector);
 vault.withdrawYield(0);
 }

 function test_Pause_AllUserOpsBlocked() public {
 vm.prank(owner);
 vault.pause();
 vm.prank(user1);
 vm.expectRevert();
 vault.lock(100 * 1e18);
 vm.prank(user1);
 vm.expectRevert();
 vault.unlock(100 * 1e18);
 vm.prank(user1);
 vm.expectRevert();
 vault.invest(0, 10 * 1e18);
 vm.prank(user1);
 vm.expectRevert();
 vault.withdrawYield(0);
 }

 // ============ Constructor Tests ============

Fairyproof InvestmentVault

16/3116/31

 function test_Constructor() public view {
 assertEq(address(vault.lockToken()), address(lockToken));
 assertEq(vault.owner(), owner);
 assertEq(vault.periodCount(), 0);
 }

 function test_Constructor_RevertZeroAddress() public {
 vm.expectRevert(IInvestmentVault.InvalidAddress.selector);
 new InvestmentVault(address(0), owner);
 }

 // ============ Lock/Unlock Tests ============

 function test_Lock() public {
 uint256 amount = 1000 * 1e18;

 vm.prank(user1);
 vault.lock(amount);

 assertEq(vault.getUserLocked(user1), amount);
 assertEq(vault.totalLockedTokens(), amount);
 assertEq(lockToken.balanceOf(address(vault)), amount);
 }

 function test_Lock_RevertZeroAmount() public {
 vm.prank(user1);
 vm.expectRevert(IInvestmentVault.InvalidAmount.selector);
 vault.lock(0);
 }

 function test_Unlock() public {
 uint256 lockAmount = 1000 * 1e18;
 uint256 unlockAmount = 400 * 1e18;

 vm.prank(user1);
 vault.lock(lockAmount);

 vm.prank(user1);
 vault.unlock(unlockAmount);

 assertEq(vault.getUserLocked(user1), lockAmount - unlockAmount);
 assertEq(vault.totalLockedTokens(), lockAmount - unlockAmount);
 }

 function test_Unlock_RevertInsufficientBalance() public {
 vm.prank(user1);
 vault.lock(100 * 1e18);

 vm.prank(user1);
 vm.expectRevert(IInvestmentVault.InsufficientBalance.selector);
 vault.unlock(200 * 1e18);
 }

 // ============ Period Creation Tests ============

 function test_CreatePeriod() public {
 vm.prank(owner);
 uint256 periodId = vault.createPeriod(
 1000 * 1e18, // maxTotalLocked
 30 days, // periodLength

Fairyproof InvestmentVault

17/3117/31

 7 days, // investLength
 1e17, // fraction (0.1 in 1e18 scale)
 address(investToken),
 500, // 5% fee
 2000 * 1e18, // maxLockPerWallet
 300 * 1e18 // maxInvestPerWallet
);

 assertEq(periodId, 0);
 assertEq(vault.periodCount(), 1);

 InvestmentVault.Period memory period = vault.getPeriod(0);
 assertEq(period.maxTotalLocked, 1000 * 1e18);
 assertEq(period.periodLength, 30 days);
 assertEq(period.investLength, 7 days);
 assertEq(period.fraction, 1e17);
 assertEq(period.investToken, address(investToken));
 assertEq(period.feePercentage, 500);
 assertEq(period.maxLockPerWallet, 2000 * 1e18);
 assertEq(period.maxInvestPerWallet, 300 * 1e18);
 assertEq(uint(period.state), uint(IInvestmentVault.PeriodState.INIT));
 }

 function test_CreatePeriod_RevertInvalidParameters() public {
 // Zero investLength
 vm.prank(owner);
 vm.expectRevert(IInvestmentVault.InvalidParameters.selector);
 vault.createPeriod(1000 * 1e18, 30 days, 0, 1e17, address(investToken), 500, 0, 0);

 // periodLength < investLength
 vm.prank(owner);
 vm.expectRevert(IInvestmentVault.InvalidParameters.selector);
 vault.createPeriod(1000 * 1e18, 5 days, 7 days, 1e17, address(investToken), 500, 0, 0);

 // Zero fraction
 vm.prank(owner);
 vm.expectRevert(IInvestmentVault.InvalidParameters.selector);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 0, address(investToken), 500, 0, 0);

 // Fee > 100%
 vm.prank(owner);
 vm.expectRevert(IInvestmentVault.InvalidParameters.selector);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 10001, 0, 0);
 }

 function test_CreatePeriod_RevertNonOwner() public {
 vm.prank(user1);
 vm.expectRevert();
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500, 0, 0);
 }

 // ============ Period Start Tests ============

 function test_StartPeriod() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);

 vm.prank(owner);
 vault.startPeriod(0);

 assertEq(uint(vault.getPeriodState(0)), uint(IInvestmentVault.PeriodState.INVEST));

Fairyproof InvestmentVault

18/3118/31

 InvestmentVault.Period memory period = vault.getPeriod(0);
 assertEq(period.startTime, block.timestamp);
 assertEq(period.investEndTime, block.timestamp + 7 days);
 assertEq(period.periodEndTime, block.timestamp + 30 days);
 }

 function test_StartPeriod_RevertNotInit() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);

 vm.prank(owner);
 vault.startPeriod(0);

 // Try to start again
 vm.prank(owner);
 vm.expectRevert(IInvestmentVault.InvalidState.selector);
 vault.startPeriod(0);
 }

 // ============ Investment Tests ============

 function test_Invest() public {
 // Setup: Create and start period
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 // User locks tokens
 vm.prank(user1);
 vault.lock(1000 * 1e18);

 // User invests (fraction = 0.1, so 1000 locked allows 100 invest)
 uint256 investAmount = 100 * 1e18;
 vm.prank(user1);
 vault.invest(0, investAmount);

 InvestmentVault.UserInvestment memory userInv = vault.getUserInvestment(user1, 0);
 assertEq(userInv.amountInvested, investAmount);

 InvestmentVault.Period memory period = vault.getPeriod(0);
 assertEq(period.totalInvested, investAmount);
 }

 function test_Invest_Multiple() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);

 // First investment
 vm.prank(user1);
 vault.invest(0, 50 * 1e18);

 // Second investment
 vm.prank(user1);
 vault.invest(0, 30 * 1e18);

Fairyproof InvestmentVault

19/3119/31

 InvestmentVault.UserInvestment memory userInv = vault.getUserInvestment(user1, 0);
 assertEq(userInv.amountInvested, 80 * 1e18);
 }

 function test_Invest_RevertInsufficientCollateral() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(100 * 1e18);

 // Try to invest 20 (requires 200 locked at fraction 0.1)
 vm.prank(user1);
 vm.expectRevert(IInvestmentVault.InsufficientCollateral.selector);
 vault.invest(0, 20 * 1e18);
 }

 function test_Invest_RevertAfterInvestWindow() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);

 // Warp past invest window - state auto-transitions to INVESTMENT_ONGOING
 vm.warp(block.timestamp + 8 days);

 vm.prank(user1);
 vm.expectRevert(IInvestmentVault.InvalidState.selector);
 vault.invest(0, 50 * 1e18);
 }

 // ============ Unlock with Active Investment Tests ============

 function test_Unlock_RevertWithActiveInvestment() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);

 // Invest 50 (requires 500 locked)
 vm.prank(user1);
 vault.invest(0, 50 * 1e18);

 // Try to unlock more than allowed
 vm.prank(user1);
 vm.expectRevert(IInvestmentVault.InsufficientCollateral.selector);
 vault.unlock(600 * 1e18);
 }

 function test_Unlock_PartialWithActiveInvestment() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);

Fairyproof InvestmentVault

20/3120/31

 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);

 // Invest 50 (requires 500 locked)
 vm.prank(user1);
 vault.invest(0, 50 * 1e18);

 // Can unlock up to 500
 vm.prank(user1);
 vault.unlock(499 * 1e18);

 assertEq(vault.getUserLocked(user1), 501 * 1e18);
 }

 // ============ Auto State Transition Tests ============

 function test_GetPeriodState_AutoTransition() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 assertEq(uint(vault.getPeriodState(0)), uint(IInvestmentVault.PeriodState.INVEST));

 // Warp past invest window
 vm.warp(block.timestamp + 8 days);

 // State should auto-transition
 assertEq(uint(vault.getPeriodState(0)), uint(IInvestmentVault.PeriodState.INVESTMENT_ONGOING));
 }

 // ============ Admin Withdraw/Deposit Tests ============

 function test_WithdrawInvestments() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);

 vm.prank(user1);
 vault.invest(0, 100 * 1e18);

 // Warp past invest window
 vm.warp(block.timestamp + 8 days);

 uint256 ownerBalBefore = investToken.balanceOf(owner);

 vm.prank(owner);
 vault.withdrawInvestments(0);

 assertEq(investToken.balanceOf(owner), ownerBalBefore + 100 * 1e18);
 }

 function test_DepositYield() public {
 vm.prank(owner);

Fairyproof InvestmentVault

21/3121/31

 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);

 vm.prank(user1);
 vault.invest(0, 100 * 1e18);

 // Warp past invest window
 vm.warp(block.timestamp + 8 days);

 vm.prank(owner);
 vault.withdrawInvestments(0);

 // Deposit yield (principal + 10% profit)
 vm.prank(owner);
 vault.depositYield(0, 110 * 1e18);

 assertEq(uint(vault.getPeriodState(0)), uint(IInvestmentVault.PeriodState.YIELD));

 InvestmentVault.Period memory period = vault.getPeriod(0);
 assertEq(period.yieldDeposited, 110 * 1e18);
 }

 // ============ Yield Withdrawal Tests ============

 function test_WithdrawYield() public {
 // Full lifecycle test
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0); // 5% fee
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);

 vm.prank(user1);
 vault.invest(0, 100 * 1e18);

 vm.warp(block.timestamp + 8 days);

 vm.prank(owner);
 vault.withdrawInvestments(0);

 // Deposit yield (principal + 10% profit = 110)
 vm.prank(owner);
 vault.depositYield(0, 110 * 1e18);

 uint256 userBalBefore = investToken.balanceOf(user1);

 vm.prank(user1);
 vault.withdrawYield(0);

 // Gross yield = 110, fee = 5.5, net = 104.5
 uint256 expectedNet = 110 * 1e18 - (110 * 1e18 * 500 / 10000);
 assertEq(investToken.balanceOf(user1), userBalBefore + expectedNet);

 // Check claimed
 InvestmentVault.UserInvestment memory userInv = vault.getUserInvestment(user1, 0);

Fairyproof InvestmentVault

22/3122/31

 assertTrue(userInv.fullyClaimed);
 }

 function test_WithdrawYield_RevertAlreadyClaimed() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);

 vm.warp(block.timestamp + 8 days);
 vm.prank(owner);
 vault.withdrawInvestments(0);
 vm.prank(owner);
 vault.depositYield(0, 110 * 1e18);

 vm.prank(user1);
 vault.withdrawYield(0);

 // Try to claim again
 vm.prank(user1);
 vm.expectRevert(IInvestmentVault.AlreadyClaimed.selector);
 vault.withdrawYield(0);
 }

 // ============ Multi-User Yield Distribution Tests ============

 function test_MultiUserYieldDistribution() public {
 // maxTotalLocked = 3000, fraction = 0.1, so max investable = 300
 vm.prank(owner);
 vault.createPeriod(3000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 // User1 locks and invests 100
 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);

 // User2 locks and invests 200
 vm.prank(user2);
 vault.lock(2000 * 1e18);
 vm.prank(user2);
 vault.invest(0, 200 * 1e18);

 vm.warp(block.timestamp + 8 days);

 vm.prank(owner);
 vault.withdrawInvestments(0);

 // Total invested: 300, deposit yield: 330 (10% profit)
 vm.prank(owner);
 vault.depositYield(0, 330 * 1e18);

 // User1: 100/300 * 330 = 110, fee 5% = 5.5, net = 104.5
 (uint256 gross1, uint256 net1, uint256 fee1) = vault.calculateUserYield(user1, 0);

Fairyproof InvestmentVault

23/3123/31

 assertEq(gross1, 110 * 1e18);
 assertEq(fee1, 55 * 1e17); // 5.5
 assertEq(net1, 1045 * 1e17); // 104.5

 // User2: 200/300 * 330 = 220, fee 5% = 11, net = 209
 (uint256 gross2, uint256 net2, uint256 fee2) = vault.calculateUserYield(user2, 0);
 assertEq(gross2, 220 * 1e18);
 assertEq(fee2, 11 * 1e18);
 assertEq(net2, 209 * 1e18);
 }

 // ============ Period Finalization Tests ============

 function test_FinalizePeriod() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);

 vm.warp(block.timestamp + 8 days);
 vm.prank(owner);
 vault.withdrawInvestments(0);
 vm.prank(owner);
 vault.depositYield(0, 110 * 1e18);

 vm.prank(owner);
 vault.finalizePeriod(0);

 assertEq(uint(vault.getPeriodState(0)), uint(IInvestmentVault.PeriodState.FINALISED));
 }

 function test_SequentialPeriods() public {
 // Create first period
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 // User makes an investment so we can complete the period
 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);

 // Create second period (in INIT)
 vm.prank(owner);
 vault.createPeriod(2000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);

 // Cannot start second period while first is active
 vm.prank(owner);
 vm.expectRevert(IInvestmentVault.PreviousPeriodNotFinalised.selector);
 vault.startPeriod(1);

 // Complete first period
 vm.warp(block.timestamp + 8 days);
 vm.prank(owner);

Fairyproof InvestmentVault

24/3124/31

 vault.withdrawInvestments(0);
 vm.prank(owner);
 vault.depositYield(0, 100 * 1e18); // Return principal
 vm.prank(owner);
 vault.finalizePeriod(0);

 // Now can start second period
 vm.prank(owner);
 vault.startPeriod(1);

 assertEq(uint(vault.getPeriodState(1)), uint(IInvestmentVault.PeriodState.INVEST));
 }

 // ============ Fee Withdrawal Tests ============

 function test_WithdrawFees() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);

 vm.warp(block.timestamp + 8 days);
 vm.prank(owner);
 vault.withdrawInvestments(0);
 vm.prank(owner);
 vault.depositYield(0, 110 * 1e18);

 vm.prank(user1);
 vault.withdrawYield(0);

 // Check collected fees
 uint256 fees = vault.collectedFees(address(investToken));
 assertEq(fees, 55 * 1e17); // 5.5

 address feeRecipient = address(100);
 vm.prank(owner);
 vault.withdrawFees(address(investToken), feeRecipient, fees);

 assertEq(investToken.balanceOf(feeRecipient), fees);
 assertEq(vault.collectedFees(address(investToken)), 0);
 }

 // ============ Pause Tests ============

 function test_Pause() public {
 vm.prank(owner);
 vault.pause();

 vm.prank(user1);
 vm.expectRevert();
 vault.lock(100 * 1e18);
 }

 function test_Unpause() public {
 vm.prank(owner);
 vault.pause();

Fairyproof InvestmentVault

25/3125/31

 vm.prank(owner);
 vault.unpause();

 vm.prank(user1);
 vault.lock(100 * 1e18);
 assertEq(vault.getUserLocked(user1), 100 * 1e18);
 }

 // ============ View Function Tests ============

 function test_GetUnlockableBalance() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);

 // Before investment, all is unlockable
 assertEq(vault.getUnlockableBalance(user1), 1000 * 1e18);

 // After investing 50 (requires 500 locked)
 vm.prank(user1);
 vault.invest(0, 50 * 1e18);

 assertEq(vault.getUnlockableBalance(user1), 500 * 1e18);
 assertEq(vault.getRequiredLocked(user1), 500 * 1e18);
 }

 function test_DepositYield_MultipleCalls() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);
 vm.warp(block.timestamp + 8 days);

 vm.prank(owner);
 vault.withdrawInvestments(0);

 vm.prank(owner);
 vault.depositYield(0, 110 * 1e18);

 vm.prank(owner);
 vm.expectRevert(IInvestmentVault.InvalidState.selector);
 vault.depositYield(0, 120 * 1e18);
 }

 function test_WithdrawInvestments_MultipleCalls_Revert() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);

Fairyproof InvestmentVault

26/3126/31

 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);
 vm.warp(block.timestamp + 8 days);

 vm.prank(owner);
 vault.withdrawInvestments(0);
 vm.prank(owner);
 vm.expectRevert(IInvestmentVault.InvalidState.selector);
 vault.withdrawInvestments(0);
 }

 function test_WithdrawInvestments_MultipleCalls_WithExtraBalance_Revert() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 500,0,0);
 vm.prank(owner);
 vault.startPeriod(0);

 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);
 vm.warp(block.timestamp + 8 days);
 investToken.mint(address(vault), 100 * 1e18);

 uint256 ownerBalBefore = investToken.balanceOf(owner);

 vm.prank(owner);
 vault.withdrawInvestments(0);
 assertEq(investToken.balanceOf(owner), ownerBalBefore + 100 * 1e18);

 vm.prank(owner);
 vm.expectRevert(IInvestmentVault.InvalidState.selector);
 vault.withdrawInvestments(0);
 }

 function test_WithdrawInvestments_MultipleCalls_SameToken_Revert() public {
 // use lockToken as investToken
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(lockToken), 500, 0, 0);
 vm.prank(owner);
 vault.startPeriod(0);
 // user1 lock and invest
 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);
 // skip to withdraw time
 vm.warp(block.timestamp + 8 days);
 // mint invest tokens to the vault
 lockToken.mint(address(vault), 100 * 1e18);
 uint256 ownerBalBefore = lockToken.balanceOf(owner);
 // first withdraw
 vm.prank(owner);
 vault.withdrawInvestments(0);
 assertEq(lockToken.balanceOf(owner), ownerBalBefore + 100 * 1e18);
 // second call should revert
 vm.prank(owner);
 vm.expectRevert(IInvestmentVault.InvalidState.selector);
 vault.withdrawInvestments(0);
 }

Fairyproof InvestmentVault

27/3127/31

 // ============ Emergency Cancel & Withdraw Tests ============

 function test_CancelPeriod_EmergencyWithdraw() public {
 vm.prank(owner);
 vault.createPeriod(1000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 0, 0, 0);
 vm.prank(owner);
 vault.startPeriod(0);
 vm.prank(user1);
 vault.lock(1000 * 1e18);
 vm.prank(user1);
 vault.invest(0, 100 * 1e18);
 vm.prank(owner);
 vault.cancelPeriod(0);
 uint256 userBalBefore = investToken.balanceOf(user1);
 vm.prank(user1);
 vault.emergencyWithdrawInvestment(0);
 assertEq(investToken.balanceOf(user1), userBalBefore + 100 * 1e18);
 // emergencyWithdrawInvestment again shoule be reverteds
 vm.prank(user1);
 vm.expectRevert(IInvestmentVault.AlreadyClaimed.selector);
 vault.emergencyWithdrawInvestment(0);
 }

 function test_MaxInvestPerWallet_Bypass_Issue() public {
 // pre period with no maxInvestPerWallet
 vm.prank(owner);
 vault.createPeriod(10000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 0, 0, 0); // no cap
 vm.prank(owner);
 vault.startPeriod(0);
 vm.prank(user1);
 vault.lock(5000 * 1e18);
 // Invest 1 token to ensure amount > 0
 vm.prank(user1);
 vault.invest(0, 1);
 // Move to next period
 vm.warp(block.timestamp + 8 days);
 vm.prank(owner);
 vault.withdrawInvestments(0);
 vm.prank(owner);
 vault.depositYield(0, 1); // deposit minimal yield
 vm.prank(owner);
 vault.finalizePeriod(0);
 // This period has a smaller maxInvestPerWallet
 vm.prank(owner);
 vault.createPeriod(10000 * 1e18, 30 days, 7 days, 1e17, address(investToken), 0, 0, 100 * 1e18);
 vm.prank(owner);
 vault.startPeriod(1);
 // Users do not need to lock again, they can invest directly
 vm.prank(user1);
 vault.invest(1, 100 * 1e18); // normal
 // Attempt to invest over the cap, should revert
 vm.prank(user1);
 vm.expectRevert(IInvestmentVault.ExceedsWalletInvestCap.selector);
 vault.invest(1, 200 * 1e18);
 }

}

Fairyproof InvestmentVault

28/3128/31

2. UnitTestOutput

11.2 External Functions Check Points

Ran 46 tests for test/InvestmentVault.t.sol:InvestmentVaultTest

[PASS] test_CancelPeriod_EmergencyWithdraw() (gas: 529852)

[PASS] test_Constructor() (gas: 21405)

[PASS] test_Constructor_RevertZeroAddress() (gas: 96282)

[PASS] test_CreatePeriod() (gas: 257700)

[PASS] test_CreatePeriod_RevertInvalidParameters() (gas: 52553)

[PASS] test_CreatePeriod_RevertNonOwner() (gas: 21467)

[PASS] test_DepositYield() (gas: 595566)

[PASS] test_DepositYield_MultipleCalls() (gas: 589506)

[PASS] test_DepositYield_RevertIfLessThanPrincipal() (gas: 503961)

[PASS] test_DepositYield_RevertIfNotWithdrawn() (gas: 492414)

[PASS] test_DepositYield_RevertIfZeroAmount() (gas: 501888)

[PASS] test_FinalizePeriod() (gas: 592042)

[PASS] test_GetPeriodState_AutoTransition() (gas: 303412)

[PASS] test_GetUnlockableBalance() (gas: 525588)

[PASS] test_Invest() (gas: 521070)

[PASS] test_Invest_LastMoment_UnlockAllAfterInvestWindow() (gas: 467132)

[PASS] test_Invest_Multiple() (gas: 535791)

[PASS] test_Invest_RevertAfterInvestWindow() (gas: 411826)

[PASS] test_Invest_RevertIfCollateralJustEnough() (gas: 394630)

[PASS] test_Invest_RevertInsufficientCollateral() (gas: 415058)

[PASS] test_Lock() (gas: 123693)

[PASS] test_Lock_RevertZeroAmount() (gas: 23238)

[PASS] test_MEV_TemporaryCollateral() (gas: 447386)

[PASS] test_MaxInvestPerWallet_Bypass_Issue() (gas: 929873)

[PASS] test_MultiUserYieldDistribution() (gas: 706506)

[PASS] test_MultiUser_ImbalancedInvestments() (gas: 682990)

[PASS] test_Pause() (gas: 53454)

[PASS] test_Pause_AllUserOpsBlocked() (gas: 86746)

[PASS] test_SequentialPeriods() (gas: 877745)

[PASS] test_StartPeriod() (gas: 313556)

[PASS] test_StartPeriod_RevertNotInit() (gas: 298793)

[PASS] test_Unlock() (gas: 137458)

[PASS] test_Unlock_PartialWithActiveInvestment() (gas: 529192)

[PASS] test_Unlock_RevertIfCollateralRequired() (gas: 496893)

[PASS] test_Unlock_RevertInsufficientBalance() (gas: 121539)

[PASS] test_Unlock_RevertWithActiveInvestment() (gas: 516133)

[PASS] test_Unpause() (gas: 130808)

[PASS] test_WithdrawFees() (gas: 661200)

[PASS] test_WithdrawInvestments() (gas: 517971)

[PASS] test_WithdrawInvestments_MultipleCalls_Revert() (gas: 524997)

[PASS] test_WithdrawInvestments_MultipleCalls_SameToken_Revert() (gas: 548724)

[PASS] test_WithdrawInvestments_MultipleCalls_WithExtraBalance_Revert() (gas: 562736)

[PASS] test_WithdrawYield() (gas: 660534)

[PASS] test_WithdrawYield_RevertAlreadyClaimed() (gas: 663560)

[PASS] test_WithdrawYield_RevertIfNoDepositYield() (gas: 505170)

[PASS] test_WithdrawYield_RevertTwice() (gas: 594089)

Suite result: ok. 46 passed; 0 failed; 0 skipped; finished in 3.75ms (13.44ms CPU time)

Ran 1 test suite in 130.41ms (3.75ms CPU time): 46 tests passed, 0 failed, 0 skipped (46 total tests)

Fairyproof InvestmentVault

29/3129/31

Index Function StateMutability Modifier
Param
Check

IsUserInterface
Unit
Test

Miscellaneous

1 createPeriod(uint256,uint256,uint256,uint256,address,uint256,uint256,uint256) onlyOwner Passed

2 startPeriod(uint256) onlyOwner Passed

3 withdrawInvestments(uint256)
onlyOwner,

nonReentrant
 Passed

4 depositYield(uint256,uint256)
onlyOwner,

nonReentrant
 Passed

5 finalizePeriod(uint256) onlyOwner Passed

6 withdrawFees(address,address,uint256)
onlyOwner,

nonReentrant
 Passed

7 pause() onlyOwner Passed

8 unpause() onlyOwner Passed

9 cancelPeriod(uint256)
onlyOwner,

nonReentrant
 Passed

10 lock(uint256)
nonReentrant,

whenNotPaused
 Yes Passed

11 unlock(uint256)
nonReentrant,

whenNotPaused
 Yes Passed

12 invest(uint256,uint256)
nonReentrant,

whenNotPaused
 Yes Passed

13 withdrawYield(uint256)
nonReentrant,

whenNotPaused
 Yes Passed

14 emergencyWithdrawInvestment(uint256)
nonReentrant,

whenNotPaused
 Yes Passed

15 getPeriodState(uint256) view Passed

16 getPeriod(uint256) view Passed

17 getUserInvestment(address,uint256) view Passed

18 getUserLocked(address) view Passed

19 getUnlockableBalance(address) view Passed

20 getRequiredLocked(address) view Passed

21 calculateUserYield(address,uint256) view Passed

11.2 External Functions Check Points

1. InvestmentVault.sol_check_point.md

File: src/InvestmentVault.sol

contract: InvestmentVault is IInvestmentVault, Ownable2Step, ReentrancyGuard, Pausable

(Empty fields in the table represent things that are not required or relevant)

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to Singularry
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08. List of issues by severity
	09. Issue descriptions
	10. Recommendations to enhance the overall security
	11. Appendices
	11.1 Unit Test
	1. InvestmentVault.t.sol
	2. UnitTestOutput

	11.2 External Functions Check Points
	1. InvestmentVault.sol_check_point.md
	File: src/InvestmentVault.sol

