
Grok X AI Token

Version 1.0.0

Serial No. 2023120300012016

Presented by Fairyproof

December 3, 2023

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Grok X
AI token issuance project.

Audit Start Time:

December 3, 2023

Audit End Time:

December 3, 2023

Audited Source File's Address:

https://bscscan.com/address/0xf875aF40467Bd46Bb78df8dc9BF805E04e6C11B3#code

The goal of this audit is to review Grok X AI’s solidity implementation for its Token Issuance
function, study potential security vulnerabilities, its general design and architecture, and uncover
bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Grok X Ai
team for specified versions. Whenever the code, software, materials, settings, environment etc is
changed, the comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding
of known security patterns and state of the art regarding system security. You agree that your
access and/or use, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

Grok X AI Token

Presented by Fairyproof

1

Fa
ir
yp
ro
of

af://n2
https://bscscan.com/address/0xf875aF40467Bd46Bb78df8dc9BF805E04e6C11B3#code
af://n16

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code Review, Including:

Project Diagnosis

Understanding the size, scope and functionality of your project’s source code based on the
specifications, sources, and instructions provided to Fairyproof.

Manual Code Review

Reading your source code line-by-line to identify potential vulnerabilities.

Specification Comparison

Determining whether your project’s code successfully and efficiently accomplishes or executes its
functions according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:

Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or
executed when test cases are run.

Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to
execute its functions.

3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest
established industry and academic practices, recommendations, and research.

Grok X AI Token

Presented by Fairyproof

2

Fa
ir
yp
ro
of

af://n24
af://n58

Serial Number Auditor Audit Time Result

2023120300012016 Fairyproof Security Team Dec 3, 2023 - Dec 3, 2023 Info Risk

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

— Documentation
For this audit, we used the following source(s) of truth about how the token issuance function
should work:

Website:https://grokxai.finance/

Source Code:
https://bscscan.com/address/0xf875aF40467Bd46Bb78df8dc9BF805E04e6C11B3#code

These were considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the Grok X AI team or reported an issue.

— Comments from Auditor

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, one issue of info-severity was uncovered. The Grok X AI team acknowledged the
issue.

Grok X AI Token

Presented by Fairyproof

3

Fa
ir
yp
ro
of

af://n58
af://n61
https://grokxai.finance/
https://bscscan.com/address/0xf875aF40467Bd46Bb78df8dc9BF805E04e6C11B3#code
af://n67
af://n84

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

03. Introduction to Grok X AI

About Grok X AI

Grok X AI ($GROKXAI) is a community project with a goal to advance into every aspect and day to
day living of people all over the world. Grok AI aims to solve this issue by enabling these groups to
have access to a secure, SAFE and completely decentralized finance, aimed at giving the power for
wealth back to where it belongs – In The Hands of The People. Through harnessing the complete
potential of community, decentralization and the Power of Blockchain.

The above description is quoted from relevant documents of Grok X AI.

04. Major functions of audited code

The audited code mainly implements a token issuance function. Here are the details:

Blockchain: BSC

Token Standard: BEP20

Token Address: 0xf875aF40467Bd46Bb78df8dc9BF805E04e6C11B3

Token Name: Grok X Ai

Token Symbol: GROK X AI

Decimals: 9

Current Supply: 1,000,000,000

Max Supply: 1,000,000,000

Taxable: Yes

Note:

This token is deployed on the BNB chain. Taxes are changed for the token transactions. For a
token exchange transaction, the seller is charged by 5% and the buyer is charged by 5%. For a
regular transfer, 10% of the transaction amount is charged.
Note: the charged taxes are kept in its contract. When the quantity of tokens kept in the contract

Grok X AI Token

Presented by Fairyproof

4

Fa
ir
yp
ro
of

af://n84
https://www.fairyproof.com/
af://n88
af://n95

exceeds a certain threshold, the tokens will be swapped for BNBs and sent to a specified address.
In addition, the contract's owner rights have been revoked.

05. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited
to the following ones:

Access Control

Admin Rights

Arithmetic Precision

Code Improvement

Contract Upgrade/Migration

Delete Trap

Design Vulnerability

DoS Attack

EOA Call Trap

Fake Deposit

Function Visibility

Gas Consumption

Implementation Vulnerability

Inappropriate Callback Function

Injection Attack

Integer Overflow/Underflow

IsContract Trap

Miner's Advantage

Misc

Price Manipulation

Proxy selector clashing

Pseudo Random Number

Re-entrancy Attack

Replay Attack

Rollback Attack

Shadow Variable

Slot Conflict

Token Issuance

Tx.origin Authentication

Grok X AI Token

Presented by Fairyproof

5

Fa
ir
yp
ro
of

af://n123

Uninitialized Storage Pointer

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be
better fixed at some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

07. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks
related to the following functions or areas.

- Function Implementation
We checked whether or not the functions were correctly implemented.
We found one issue, for more details please refer to [FP-1] in "09. Issue description".

- Access Control
We checked each of the functions that could modify a state, especially those functions that could
only be accessed by owner or administrator
We didn't find issues or risks in these functions or areas at the time of writing.

Grok X AI Token

Presented by Fairyproof

6

Fa
ir
yp
ro
of

af://n190
af://n204
af://n208
af://n211
af://n214

Index Title Issue/Risk Severity Status

FP-1 Lack of Restriction for Caller of receive function
Access

Control
Info Acknowledged

- Token Issuance & Transfer
We examined token issuance and transfers for situations that could harm the interests of holders.
We didn't find issues or risks in these functions or areas at the time of writing.

- State Update
We checked some key state variables which should only be set at initialization.
We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security
We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous
We checked the code for optimization and robustness.
We didn't find issues or risks in these functions or areas at the time of writing.

08. List of issues by severity

09. Issue descriptions

[FP-1] Lack of Restriction for Caller of receive
function

Access Control Info Acknowledged

Issue/Risk: Access Control

Description:

Grok X AI Token

Presented by Fairyproof

7

Fa
ir
yp
ro
of

af://n214
af://n217
af://n220
af://n223
af://n227
af://n244

The implementation only allows an address specified by router to receive BNBs, therefore it
should have msg.sender == address(router) in the receive function to prevent unexpected

transfers of BNBs.

Recommendation:

Update/Status:

The Grok X AI team has known the issue.

10. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

- N/A

11. Appendices

11.1 Unit Test

1. GrokXAi.t.js

const {

 loadFixture,

} = require("@nomicfoundation/hardhat-toolbox/network-helpers");

const { expect,assert } = require("chai");

const { getBigInt } = require("ethers");

const { ethers } = require("hardhat");

describe("GROKXAI Token Unit Test", function () {

 const marketingWallet = "0xE1BD10ba60D1CB89cC00cc51e67a547EdD0570C3";

 const deadWallet = "0x000000000000000000000000000000000000dEaD";

 const tTotal = ethers.parseUnits("1" + "0".repeat(9),9);

 const init_liquid = ethers.parseUnits("10000000",9);

Grok X AI Token

Presented by Fairyproof

8

Fa
ir
yp
ro
of

af://n258
af://n260
af://n263
af://n265
af://n267

 async function deployTokenFixture() {

 const [owner, alice,bob,...users] = await ethers.getSigners();

 const WETH9 = await ethers.getContractFactory("WETH9");

 const weth = await WETH9.deploy();

 const UniswapV2Factory = await

ethers.getContractFactory("UniswapV2Factory");

 const factory = await UniswapV2Factory.deploy(users[0].address);

 const UniswapV2Router02 = await

ethers.getContractFactory("UniswapV2Router02");

 const router = await

UniswapV2Router02.deploy(factory.target,weth.target);

 const BITXToken = await ethers.getContractFactory("GROKXAI");

 const instance = await BITXToken.deploy(router.target);

 await instance.approve(router.target,ethers.MaxUint256);

 await

router.addLiquidityETH(instance.target,init_liquid,1,1,owner.address,9876543210,{

 value:ethers.parseEther("10")

 });

 return {owner,alice,bob,users,instance,factory,router,weth};

 }

 it("meta and init supply unit test", async () => {

 const {instance,owner,factory,router} = await

loadFixture(deployTokenFixture);

 expect(await instance.name()).eq("Grok X Ai");

 expect(await instance.symbol()).eq("GROK X AI");

 expect(await instance.decimals()).eq(9);

 expect(await instance.totalSupply()).eq(tTotal);

 expect(await instance.balanceOf(owner.address)).eq(tTotal - init_liquid);

 expect(await instance.router()).eq(router.target);

 let weth = await router.WETH();

 let pair = await factory.getPair(weth,instance.target);

 expect(await instance.pair()).eq(pair);

 expect(await instance.balanceOf(pair)).eq(init_liquid);

 });

 it("Transfer and rate uint test", async () => {

 const {instance,owner,users,alice,bob,router,weth} = await

loadFixture(deployTokenFixture);

 // check rate

 let custom_t_amount = ethers.parseEther("1.0");

 let custom_r_amount = await

instance.reflectionFromToken(custom_t_amount,false);

 let value = ethers.parseUnits("20000000",9);

 await instance.transfer(alice,value);

 expect(await instance.balanceOf(alice)).eq(value);

 let pair = await instance.pair();

 expect(await instance.balanceOf(pair)).eq(init_liquid);

Grok X AI Token

Presented by Fairyproof

9

Fa
ir
yp
ro
of

 expect(await

instance.tokenFromReflection(custom_r_amount)).eq(custom_t_amount);

 // alice transfer token to bob

 await instance.connect(alice).transfer(bob.address,value);

 let fee = value / ethers.getBigInt(10);

 expect(await instance.balanceOf(instance.target)).eq(fee);

 expect(await instance.balanceOf(bob.address)).eq(value - fee);

 expect(await instance.balanceOf(pair)).eq(init_liquid);

 expect(await

instance.tokenFromReflection(custom_r_amount)).eq(custom_t_amount);

 // bob transfer token to alice

 await instance.connect(bob).transfer(alice.address,value - fee);

 expect(await instance.balanceOf(pair)).eq(init_liquid + fee);

 let new_fee = (value - fee) * ethers.getBigInt(1) / ethers.getBigInt(10);

 expect(await instance.balanceOf(alice.address)).eq(value -fee - new_fee);

 expect(await instance.balanceOf(instance.target)).eq(new_fee);

 let swapTokensAtAmount = await instance.swapTokensAtAmount();

 assert(swapTokensAtAmount < new_fee,"unexpected");

 expect(await

instance.tokenFromReflection(custom_r_amount)).eq(custom_t_amount);

 // bob sell token

 let amountIn = (value -fee - new_fee) / getBigInt(10000);

 new_fee = amountIn * getBigInt(5) / getBigInt(100);

 await instance.connect(alice).approve(router.target,ethers.MaxUint256);

 await

router.connect(alice).swapExactTokensForETHSupportingFeeOnTransferTokens(

 amountIn,

 1,

 [instance.target,weth.target],

 alice.address,

 9876543210

);

 expect(await instance.balanceOf(instance.target)).eq(new_fee);

 expect(await

instance.tokenFromReflection(custom_r_amount)).eq(custom_t_amount);

 let market_balance = await ethers.provider.getBalance(marketingWallet);

 assert(market_balance > 0,"The balance of marketingWallet must be greater

than zero");

 let balance_alice = await instance.balanceOf(alice.address);

 assert(swapTokensAtAmount > new_fee,"unexpected");

 let balance_before = await instance.balanceOf(pair);

 // alice buy token

 await

router.connect(alice).swapExactETHForTokensSupportingFeeOnTransferTokens(

 1,

 [weth.target,instance.target],

 users[2].address,

 9876543210,

 {

 value:ethers.parseEther("1")

 }

);

Grok X AI Token

Presented by Fairyproof

10

Fa
ir
yp
ro
of

11.2 External Functions Check Points

1. GROKXAI_output.md

File: contracts/GROKXAI.sol

contract: GROKXAI is Context, IBEP20, Ownable

(Empty fields in the table represent things that are not required or relevant)

 let balance_after = await instance.balanceOf(pair);

 let reduce = balance_before - balance_after;

 let balance_this = await instance.balanceOf(instance.target);

 new_fee = balance_this - new_fee;

 expect(new_fee).eq(reduce * getBigInt(5) / getBigInt(100));

 // check user balance

 let balance = await instance.balanceOf(users[2].address);

 expect(balance).eq(reduce - new_fee);

 expect(await

instance.tokenFromReflection(custom_r_amount)).eq(custom_t_amount);

 expect(await instance.balanceOf(owner.address)).eq(tTotal - init_liquid -

value);

 expect(await instance.balanceOf(alice.address)).eq(balance_alice);

 });

 it("rescueBNB unit test", async () => {

 const {instance,owner,alice,bob} = await loadFixture(deployTokenFixture);

 await owner.sendTransaction({

 from:owner.address,

 to:instance.target,

 value:ethers.parseEther("1.0")

 });

 expect(await

ethers.provider.getBalance(instance.target)).eq(ethers.parseEther("1.0"));

 await

expect(instance.connect(alice).rescueBNB(ethers.parseEther("1.0"))).to.revertedWi

th(

 "Ownable: caller is not the owner"

);

 await instance.rescueBNB(ethers.parseEther("1.0"));

 expect(await ethers.provider.getBalance(instance.target)).eq(0);

 });

});

Grok X AI Token

Presented by Fairyproof

11

Fa
ir
yp
ro
of

af://n272
af://n274
af://n275

Index Function StateMutability Modifier
Param
Check

IsUserInterface
Unit
Test

Miscellaneous

1 name() pure Passed

2 symbol() pure Passed

3 decimals() pure Passed

4 totalSupply() view Passed

5 balanceOf(address) view Passed

6 allowance(address,address) view

7 approve(address,uint256) Yes

8 transferFrom(address,address,uint256) Yes

9 increaseAllowance(address,uint256) Yes

10 decreaseAllowance(address,uint256) Yes

11 transfer(address,uint256) Yes Passed

12 isExcludedFromReward(address) view

13 reflectionFromToken(uint256,bool) view Passed

14 tokenFromReflection(uint256) view Passed

15 excludeFromFee(address) onlyOwner

16 isExcludedFromFee(address) view

17 rescueBNB(uint256) onlyOwner Passed

18 receive() payable Passed

19 owner() view

20 renounceOwnership() onlyOwner

21 transferOwnership(address) onlyOwner

Grok X AI Token

Presented by Fairyproof

12

Fa
ir
yp
ro
of

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to Grok X AI
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08. List of issues by severity
	09. Issue descriptions
	10. Recommendations to enhance the overall security
	- N/A

	11. Appendices
	11.1 Unit Test
	1. GrokXAi.t.js

	11.2 External Functions Check Points
	1. GROKXAI_output.md
	File: contracts/GROKXAI.sol

