
D-chain

Version 1.0.0

Serial No. 2023050400012019

Presented by Fairyproof

May 4, 2023

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the D-chain BlockChain
project.

Audit Start Time:

April 24, 2023

Audit End Time:

May 4, 2023

The goal of this audit is to review D-chain’s Go implementation for its blockchain functions, study potential
security vulnerabilities, its general design and architecture, and uncover bugs that could compromise the
software in production.

We make observations on specific areas of the code that present concrete problems, as well as general
observations that traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the D-chain team for
specified versions. Whenever the code, software, materials, settings, environment etc is changed, the
comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding of known
security patterns and state of the art regarding system security. You agree that your access and/or use,
including but not limited to any associated services, products, protocols, platforms, content, and materials, will
be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming language, or
other programming aspects that could present security risks. If the audited source files are smart contract
files, risks or issues introduced by using data feeds from off-chain sources are not extended by this review
either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further
testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with this
report, its content, and the related services and products and your use thereof, including, without limitation,
the implied warranties of merchantability, fitness for a particular purpose, and non-infringement.

D-chain

Presented by Fairyproof1

Fa
ir
yp
ro
of

af://n2
af://n14

We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or
offered by a third party through the product, any open source or third-party software, code, libraries,
materials, or information linked to, called by, referenced by or accessible through the report, its content, and
the related services and products, any hyperlinked websites, any websites or mobile applications appearing on
any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction
between you and any third-party providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY
ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its specifications
were implemented. The codebase was then subject to deep analysis and scrutiny, resulting in a series of
observations. The problems and their potential solutions are discussed in this document and, whenever
possible, we identify common sources for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code Review, Including:

Project Diagnosis

Understanding the size, scope and functionality of your project’s source code based on the specifications,
sources, and instructions provided to Fairyproof.

Manual Code Review

Reading your source code line-by-line to identify potential vulnerabilities.

Specification Comparison

Determining whether your project’s code successfully and efficiently accomplishes or executes its functions
according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:

Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or executed
when test cases are run.

Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to execute its
functions.

3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest established
industry and academic practices, recommendations, and research.

D-chain

Presented by Fairyproof2

Fa
ir
yp
ro
of

af://n22
af://n56

Serial Number Auditor Audit Time Result

2023050400012019 Fairyproof Security Team Apr 24, 2023 - May 4, 2023 Low Risk

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is assigned a
severity level based on the potential impact of the issue and recommendations to fix it, if applicable. For ease
of navigation, an index by topic and another by severity are both provided at the beginning of the report.

— Documentation
For this audit, we used the following source(s) of truth about how the token issuance function should work:

Source Code: SourceCode

This was considered the specification, and when discrepancies arose with the actual code behavior, we
consulted with the D-chain team or reported an issue.

— Comments from Auditor

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project. During the
audit, four issues of low-severity and three issues of info-severity were uncovered. The D-chain team
acknowledged all the issues.

02. About Fairyproof

D-chain

Presented by Fairyproof3

Fa
ir
yp
ro
of

af://n56
af://n59
af://n64
af://n84

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits for
organizations. Fairyproof has developed industry security standards for designing and deploying blockchain
applications.

03. Introduction to D-chain

D-chain is an a permissioned consortium blockchain that provides developers with the configurable projects
needed to make blockchain applications successful. D-chain implements the QBFT proof of authority (PoA)
consensus protocols.PoA consensus protocols work when participants know each other and there is a level of
trust between them. A group of nodes in the network act as validators vote to add or remove network nodes.

By default D-chain is a free gas network, however gas can be enabled if required.

At the same time, D-chain provides two types of transactions, the one is public transactions and the other is
private transactions.

QBFT is a blockchain consensus protocol based on the Byzantine-fault-tolerant (BFT).
QBFT provides the following features:

Immediate Finality
Dynamic Validator Set
Optimal Byzantine Resilience (the protocol can withstand up to (n - 1) / 3 validators malfunctioning or

behaving maliciously) when operating in a partially synchronous network
Message complexity of O(n2), where n is the number of validators

The above description is quoted from relevant documents of D-chain.

04. Major functions of audited code

The audited code mainly implements a D-chain's client and it is based on Ethereum's Go implemented client.

05. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited to the
following ones:

Access Control

D-chain

Presented by Fairyproof4

Fa
ir
yp
ro
of

https://www.fairyproof.com/
af://n89
af://n108
af://n114

Admin Rights
Arithmetic Precision
Code Improvement
Signature Security
Design Vulnerability
DoS Attack
Coding Security
Transaction Model Security
Node Communication Security
Data Storage Security
RPC Security
Data History Vulnerability
Block Processing Security
Consensus Security
System Contract Security
Account Security
Misc

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at
some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

07. Major areas that need attention

D-chain

Presented by Fairyproof5

Fa
ir
yp
ro
of

af://n158
af://n172

Based on the provided source code the Fairyproof team focused on the possible issues and risks related to the
following functions or areas.

- Static Code Analysis
We checked issues that were flagged during static code analysis.
We found some issues, for more details please refer to [FP-1,FP-2,FP-3,FP-4,FP-5,FP-7] in "09. Issue
description".

- P2P Security
We checked for code that may affect node authentication, communication encryption security, message
format verification, and significantly degrade node performance.

We didn't find issues or risks in these functions or areas at the time of writing.

- Consensus Security
We checked for code that may affect the legitimacy of consensus nodes, consensus security, consensus
implementation's security, consensus nodes' fault tolerance, ultimate consistency and finality, and the
resistance of the consensus mechanism to attacks.

We didn't find issues or risks in these functions or areas at the time of writing.

- Account Security
We checked for code that may affect account management, permission verification, the security of private
key/mnemonic/certificate generation algorithms, and the security of private key/mnemonic/certificate storage
and usage.

We didn't find issues or risks in these functions or areas at the time of writing.

- Data Storage Security
We checked for code that may affect the security of data classification storage, sensitive data encryption, data
access permissions, and database stability.

We didn't find issues or risks in these functions or areas at the time of writing

- Transaction Model Security
We checked for code that may affect transaction encryption, transaction signature, transaction processing
logic, and the resistance of transactions to replay attacks.

D-chain

Presented by Fairyproof6

Fa
ir
yp
ro
of

af://n176
af://n179
af://n183
af://n187
af://n191
af://n195

Index Title Issue/Risk Severity Status

FP-1 Use of Weak Random Number Generator
Unsafe

Random
Number

Low
Acknowledge

d

FP-2 TLS MinVersion Too Low
Design

Vulnerability
Low

Acknowledge
d

FP-3
Use of Net/Http Serve Function That Has

No Support for Setting Timeouts
DoS Attack Low

Acknowledge
d

FP-4 Lack of Setting for ReadHeaderTimeout DoS Attack Low
Acknowledge

d

FP-5 TLS InsecureSkipVerify Set True
Design

Vulnerability
Info

Acknowledge
d

FP-6 Errors Unhandled
Design

Vulnerability
Info

Acknowledge
d

FP-7 Use of Unsafe Calls
Design

Vulnerability
Info

Acknowledge
d

We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous
We checked the code for optimization and robustness.
We found one issue, for more details please refer to [FP-6] in "09. Issue description".

08. List of issues by severity

09. Issue descriptions

[FP-1] Use of Weak Random Number Generator

Unsafe Random Number Low Acknowledged

D-chain

Presented by Fairyproof7

Fa
ir
yp
ro
of

af://n199
af://n203
af://n257

Issue/Risk: Unsafe Random Number

Description:

math/rand is much faster for applications that don’t need crypto-level or security-related random data
generation. crypto/rand is suited for secure and crypto-ready usage, but it’s slower. But in most cases,
crypto/rand is likely to be more suitable, unless the performance is critical but the application's security is not
(which is rare).

It is highly recommended to use crypto/rand when needing to be secure with random numbers such as
generating session IDs in a web application.

Recommendation:

Consider useing crypto/rand instead of math/rand :

Update/Status:

The D-chain team has acknowledged the issue.

[FP-2] TLS MinVersion Too Low

Design Vulnerability Low Acknowledged

Issue/Risk: Design Vulnerability

Description:

qlight/config.go line 93: lack of TLS ' Settings for MinVersion and MaxVersion .

Recommendation:

Consider adding settings as follows:

package main

import "crypto/rand"

func main() {

 good, _ := rand.Read(nil)

 println(good)

}

package main

import "crypto/tls"

func saferTLSConfig() {

 config := &tls.Config{}

 config.MinVersion = tls.VersionTLS12

 config.MaxVersion = tls.VersionTLS13

}

D-chain

Presented by Fairyproof8

Fa
ir
yp
ro
of

Update/Status:

The D-chain team has acknowledged the issue.

[FP-3] Use of Net/Http Serve Function That Has No
Support for Setting Timeouts

DoS Attack Low Acknowledged

Issue/Risk: DoS Attack

Description:

HTTP timeouts are necessary to expire inactive connections and failing to do so might make the application
vulnerable to attacks like slowloris which work by sending data very slow, which in case of no timeout will keep
the connection active eventually leading to a denial-of-service (DoS) attack.

Lack of settings in In line 64 of metrics/exp/exp.go , line 311 of cmd/faucet/faucet.go and line 261 of

internal/debug/flags.go

Recommendation:

Consider making changes as follows:

Update/Status:

The D-chain team has acknowledged the issue.

package main

import (

 "fmt"

 "time"

 "net/http"

)

func main() {

 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintf(w, "Hello, %s!", r.URL.Path[1:])

 })

 server := &http.Server{

 Addr: ":1234",

 ReadHeaderTimeout: 3 * time.Second,

 }

 err := server.ListenAndServe()

 if err != nil {

 panic(err)

 }

}

D-chain

Presented by Fairyproof9

Fa
ir
yp
ro
of

[FP-4] Lack of Settings for ReadHeaderTimeout

DoS Attack Low Acknowledged

Issue/Risk: DoS Attack

Description:

It may be vulnerabile to potential slowloris attacks because ReadHeaderTimeout is not configured in the
http.Server. Slowloris is a DoS attack (Denial-of-Service) that tries to overwhelm the target by opening and
keeping open multiple HTTP connections. All those connections will sature the server, making it unable to
open new ones for legit requests. It lacks settings for ReadHeaderTimeout in line 140 of node/rpcstack.go

Recommendation:

Consider adding settings for the ReadHeaderTimeout field of server.

Update/Status:

The D-chain team has acknowledged the issue.

[FP-5] TLS InsecureSkipVerify Set True

Design Vulnerability Info Acknowledged

Issue/Risk: Design Vulnerability

Description:

In line 27 of qlight/config.go , the value of InsecureSkipVerify is true. It means D-Chain needs to

customize verification and be careful.

Recommendation:

Consider adding the setting options for the ReadHeaderTimeout field of server.

Update/Status:

The D-chain team has acknowledged the issue.

[FP-6] Errors Unhandled

Design Vulnerability Info Acknowledged

Issue/Risk: Design Vulnerability

Description:

In the implementation, many codes need error handlings such as s.Write(hex) in line 485 of

common/types.go .

Recommendation:

D-chain

Presented by Fairyproof10

Fa
ir
yp
ro
of

Consider using GoSec to inspect all the codes and adding necessary error handlings.

Update/Status:

The D-chain team has acknowledged the issue.

[FP-7] Use of Unsafe Calls

Design Vulnerability Info Acknowledged

Issue/Risk: Design Vulnerability

Description:

Multiple codes use unsafe calls such as the code in line 80 to line 82 in common\bitutil\bitutil.go using

unsafe.Pointer(&dst) . This should be used with caution.

Recommendation:

Consider using unsafe calls with great caution

Update/Status:

The D-chain team has acknowledged the issue.

10. Recommendations to enhance the overall
security

We list some recommendations in this section. They are not mandatory but will enhance the overall security of
the system if they are adopted.

Consider using a static analysis tool for Go language to check the implementation and checking for each
of the flagged issues.

11. Appendices

- N/A

D-chain

Presented by Fairyproof11

Fa
ir
yp
ro
of

af://n335
af://n345
af://n347

11.2 External Functions Check Points

- N/A

D-chain

Presented by Fairyproof12

Fa
ir
yp
ro
of

af://n350
af://n352

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to D-chain
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Static Code Analysis
	- P2P Security
	- Consensus Security
	- Account Security
	- Data Storage Security
	- Transaction Model Security
	- Miscellaneous

	08. List of issues by severity
	09. Issue descriptions
	10. Recommendations to enhance the overall security
	11. Appendices
	- N/A

	11.2 External Functions Check Points
	- N/A

