
Chiliz Token

Version 1.0.0

Serial No. 2023082900012029

Presented by Fairyproof

August 29, 2023



 

01. Introduction  
 

This document includes the results of the audit performed by the Fairyproof team on the Chiliz token issuance 
project.

Audit Start Time:

August 28, 2023

Audit End Time:

August 28, 2023

Audited Source File's Address: 

https://etherscan.io/token/0x3506424f91fd33084466f402d5d97f05f8e3b4af#code

 

The goal of this audit is to review Chiliz Token’s solidity implementation for its token issuance function, study 
potential security vulnerabilities, its general design and architecture, and uncover bugs that could compromise 
the software in production.

We make observations on specific areas of the code that present concrete problems, as well as general 
observations that traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Chiliz Token team for  
specified versions. Whenever the code, software, materials, settings, environment etc is changed, the 
comments of this audit will no longer apply. 

 

— Disclaimer  
Note that as of the date of publishing, the contents of this report reflect the current understanding of known 
security patterns and state of the art regarding system security. You agree that your access and/or use, 
including but not limited to any associated services, products, protocols, platforms, content, and materials, will 
be at your sole risk. 

The review does not extend to the compiler layer, or any other areas beyond the programming language, or 
other programming aspects that could present security risks. If the audited source files are smart contract 
files, risks or issues introduced by using data feeds from offchain sources are not extended by this review 
either. 

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further 
testing and audit is recommended after the issues covered are fixed.  

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with this 
report, its content, and the related services and products and your use thereof, including, without limitation, 
the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. 

Chiliz Token

Presented by Fairyproof1

Fa
ir
yp
ro
of

af://n2
https://etherscan.io/token/0x3506424f91fd33084466f402d5d97f05f8e3b4af#code
af://n16


We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or 
offered by a third party through the product, any open source or third-party software, code, libraries, 
materials, or information linked to, called by, referenced by or accessible through the report, its content, and 
the related services and products, any hyperlinked websites, any websites or mobile applications appearing on 
any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction 
between you and any third-party providers of products or services. 

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY 
ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF 
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

 

— Methodology  
The above files' code was studied in detail in order to acquire a clear impression of how the its specifications 
were implemented. The codebase was then subject to deep analysis and scrutiny, resulting in a series of 
observations. The problems and their potential solutions are discussed in this document and, whenever 
possible, we identify common sources for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code Review, Including:

Project Diagnosis 

Understanding the size, scope and functionality of your project’s source code based on the specifications, 
sources, and instructions provided to Fairyproof.

Manual Code Review

Reading your source code line-by-line to identify potential vulnerabilities.

Specification Comparison

Determining whether your project’s code successfully and efficiently accomplishes or executes its functions 
according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:

Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or executed 
when test cases are run.

Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to execute its 
functions.

3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest established 
industry and academic practices, recommendations, and research.

 

Chiliz Token

Presented by Fairyproof2

Fa
ir
yp
ro
of

af://n24
af://n58


Serial Number Auditor Audit Time Result

2023082900012029 Fairyproof Security Team Aug 28, 2023 - Aug 28, 2023 Low Risk

— Structure of the document  
This report contains a list of issues and comments on all the above source files. Each issue is assigned a 
severity level based on the potential impact of the issue and recommendations to fix it, if applicable. For ease 
of navigation, an index by topic and another by severity are both provided at the beginning of the report.

 

— Documentation  
For this audit, we used the following source(s) of truth about how the token issuance function should work:

Website:https://www.chiliz.com/

Source Code: https://etherscan.io/token/0x3506424f91fd33084466f402d5d97f05f8e3b4af#code

These were considered the specification, and when discrepancies arose with the actual code behavior, we 
consulted with the Chiliz Token team or reported an issue. 

 

— Comments from Auditor  

 

 

Summary: 

The Fairyproof security team used its auto analysis tools and manual work to audit the project. During the 
audit, one issue of low-severity was uncovered. The Chiliz Token team acknowledged the issue.

 

 

02. About Fairyproof  

Chiliz Token

Presented by Fairyproof3

Fa
ir
yp
ro
of

af://n58
af://n61
https://www.chiliz.com/
https://etherscan.io/token/0x3506424f91fd33084466f402d5d97f05f8e3b4af#code
af://n67
af://n84


 

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits for 
organizations. Fairyproof has developed industry security standards for designing and deploying blockchain 
applications.

 

 

03. Introduction to Chiliz Token  
 

CHZ is the native digital token for the Chiliz sports & entertainment ecosystem currently powering Socios.com, 
ChilizX and the Chiliz Chain.It is the leading digital currency for sports and entertainment by the eponymous 
Malta-based FinTech provider. It operates the blockchain-based sports entertainment platform Socios, which 
enables users to participate in the governance of their favorite sports brands.

The above description is quoted from relevant documents of Chiliz Token.

 

 

04. Major functions of audited code  
 

The audited code mainly implements a token issuance function. Here are the details:

Blockchain: Ethereum
Token Standard: ERC-20
Token Address: 0x3506424f91fd33084466f402d5d97f05f8e3b4af
Token Name: chiliZ
Token Symbol: CHZ
Decimals: 18
Current Supply: 8,888,888,888
Max Supply: 8,888,888,888
Pausable: Yes

 

 

05. Coverage of issues  
 

The issues that the Fairyproof team covered when conducting the audit include but are not limited to the 
following ones:

Access Control
Admin Rights

Chiliz Token

Presented by Fairyproof4

Fa
ir
yp
ro
of

https://www.fairyproof.com/
af://n88
af://n93
af://n118


Arithmetic Precision
Code Improvement
Contract Upgrade/Migration
Delete Trap
Design Vulnerability
DoS Attack
EOA Call Trap
Fake Deposit
Function Visibility
Gas Consumption
Implementation Vulnerability
Inappropriate Callback Function
Injection Attack
Integer Overflow/Underflow
IsContract Trap
Miner's Advantage
Misc
Price Manipulation
Proxy selector clashing
Pseudo Random Number
Re-entrancy Attack
Replay Attack
Rollback Attack
Shadow Variable
Slot Conflict
Token Issuance
Tx.origin Authentication
Uninitialized Storage Pointer

 

 

06. Severity level reference  
 

Every issue in this report was assigned a severity level from the following:

Critical    severity issues need to be fixed as soon as possible.

 

High    severity issues will probably bring problems and should be fixed.

 

Medium    severity issues could potentially bring problems and should eventually be fixed.

 

Low    severity issues are minor details and warnings that can remain unfixed but would be better fixed at 
some point in the future.

Chiliz Token

Presented by Fairyproof5

Fa
ir
yp
ro
of

af://n185


 

Informational    is not an issue or risk but a suggestion for code improvement.

 

 

07. Major areas that need attention  
 

Based on the provided source code the Fairyproof team focused on the possible issues and risks related to the 
following functions or areas.

 

- Function Implementation  
We checked whether or not the functions were correctly implemented. 
We didn't find issues or risks in these functions or areas at the time of writing.

 

- Access Control  
We checked each of the functions that could modify a state, especially those functions that could only be 
accessed by owner or administrator 
We didn't find issues or risks in these functions or areas at the time of writing.

 

- Token Issuance & Transfer  
We examined token issuance and transfers for situations that could harm the interests of holders. 
We found one issue, for more details please refer to [FP-1] in "09. Issue description".

 

- State Update  
We checked some key state variables which should only be set at initialization. 
We didn't find issues or risks in these functions or areas at the time of writing.

 

- Asset Security  
We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

 

- Miscellaneous  

Chiliz Token

Presented by Fairyproof6

Fa
ir
yp
ro
of

af://n199
af://n203
af://n206
af://n209
af://n212
af://n215
af://n218


Index Title Issue/Risk Severity Status

FP-1 Token transfers can be paused Token Issuance Low Acknowledged

We checked the code for optimization and robustness. 
We didn't find issues or risks in these functions or areas at the time of writing.

 

 

08. List of issues by severity  

 

 

09. Issue descriptions  
 

[FP-1] Token transfers can be paused  

Token Issuance  Low   Acknowledged  

Issue/Risk: Token Issuance

Description: 

In the current  contract, token transfers can be paused, which may cause losses to token holders in certain 
scenarios.

Recommendation: 

Consider properly using this function or removing it.

Update/Status: 

The Chiliz Token team replied that it is a necessary function.

 

 

10. Recommendations to enhance the overall
security

 

 

We list some recommendations in this section. They are not mandatory but will enhance the overall security of 
the system if they are adopted.  

 

- N/A  

Chiliz Token

Presented by Fairyproof7

Fa
ir
yp
ro
of

af://n222
af://n239
af://n253
af://n255


 

 

11. Appendices  
 

11.1 Unit Test  
 

1. chiliZ.t.js  

const { expect } = require("chai");

const { ethers } = require("hardhat");

 

describe("ChiliZ Token Test", function () {

  let owner, addr1;

  const totalSupply = ethers.parseEther("8888888888")

  const AddressZero = "0x0000000000000000000000000000000000000000"

 

  async function deployToken() {

    [owner, addr1] = await ethers.getSigners();

    const TorumToken = await ethers.getContractFactory("chiliZ");

    const instance = await TorumToken.deploy();

    return { instance };

  }

 

  describe("Deployment test", function () {

    it("Should set the correct metadata", async function () {

      const { instance } = await deployToken();

 

      expect(await instance.totalSupply()).equal(totalSupply);

      expect(await instance.balanceOf(owner.address)).equal(totalSupply);

      expect(await instance.name()).equal("chiliZ");

      expect(await instance.symbol()).equal("CHZ");

      expect(await instance.decimals()).equal(18);

    });

  });

 

  describe("Transactions test", function () {

    it("Should transfer tokens between accounts", async function () {

      const { instance } = await deployToken();

      const transferAmount = 5000;

 

      await expect(instance.transfer(addr1.address, transferAmount))

        .be.emit(instance, "Transfer").withArgs(owner.address, addr1.address, 

transferAmount);

      expect(await instance.balanceOf(addr1.address)).to.equal(transferAmount);

    });

 

Chiliz Token

Presented by Fairyproof8

Fa
ir
yp
ro
of

af://n258
af://n260
af://n262


    it("Should be failed if sender doesn’t have enough tokens", async function () {

      const { instance } = await deployToken();

      const initialOwnerBalance = await instance.balanceOf(owner.address);

      await expect(instance.connect(addr1).transfer(owner.address, 1)).to.reverted;

      expect(await instance.balanceOf(owner.address)).to.equal(initialOwnerBalance);

    });

 

    it("Should be failed if sender transfer to zero address", async function () {

      const { instance } = await deployToken();

      const transferAmount = 5000;

      await expect(instance.transfer(AddressZero, transferAmount)).to.reverted;

      await instance.approve(owner.address, transferAmount);

      await expect(instance.transferFrom(owner.address, AddressZero, 

transferAmount)).to.reverted;

    });

 

    it("Should be successful if sender transfer to himself", async function () {

      const { instance } = await deployToken();

      const transferAmount = 5000;

 

      await expect(instance.transfer(owner.address, transferAmount))

        .be.emit(instance, "Transfer").withArgs(owner.address, owner.address, 

transferAmount);

      await instance.approve(owner.address, transferAmount);

      await expect(instance.transferFrom(owner.address, owner.address, transferAmount))

        .be.emit(instance, "Transfer").withArgs(owner.address, owner.address, 

transferAmount);

      expect(await instance.balanceOf(owner.address)).to.equal(totalSupply);

    });

 

    it("Should be successful if sender transfer zero amount", async function () {

      const { instance } = await deployToken();

 

      await expect(instance.transfer(addr1.address, 0))

        .be.emit(instance, "Transfer").withArgs(owner.address, addr1.address, 0);

      await expect(instance.transferFrom(owner.address, addr1.address, 0))

        .be.emit(instance, "Transfer").withArgs(owner.address, addr1.address, 0);

      expect(await instance.balanceOf(owner.address)).to.equal(totalSupply);

    });

 

    it("TransferFrom should need enough allowance", async function () {

      const { instance } = await deployToken();

      const transferAmount = 5000;

 

      await expect(instance.transferFrom(owner.address, addr1.address, 

transferAmount)).to.reverted;

      await instance.approve(owner.address, transferAmount);

      await expect(instance.transferFrom(owner.address, addr1.address, transferAmount))

        .be.emit(instance, "Transfer").withArgs(owner.address, addr1.address, 

transferAmount);

      expect(await instance.balanceOf(addr1.address)).to.equal(transferAmount);

 

      await instance.connect(addr1).approve(owner.address, transferAmount);

Chiliz Token

Presented by Fairyproof9

Fa
ir
yp
ro
of



      await instance.transferFrom(addr1.address, owner.address, transferAmount)

      expect(await instance.balanceOf(addr1.address)).to.equal(0);

    });

  });

 

 

  describe("Allowance test", function () {

    it("Should update the allowance after approving", async function () {

      const { instance } = await deployToken();

      const approveAmount = 1000

 

      await expect(instance.approve(addr1.address, approveAmount))

        .to.emit(instance, "Approval").withArgs(owner.address, addr1.address, 

approveAmount);

      const allowance = await instance.allowance(owner.address, addr1.address);

      expect(allowance).to.equal(approveAmount);

      // increse allowance again

      await expect(instance.increaseAllowance(addr1.address, approveAmount))

        .to.emit(instance, "Approval").withArgs(owner.address, addr1.address, approveAmount 

* 2);

      expect(await instance.allowance(owner.address, addr1.address)).to.equal(approveAmount 

* 2);

      // decrease allowance

      await expect(instance.decreaseAllowance(addr1.address, approveAmount))

        .to.emit(instance, "Approval").withArgs(owner.address, addr1.address, 

approveAmount);

    });

 

    it("Should overflow when increasing allowance with a very large number", async function 

() {

      const { instance } = await deployToken();

      const largeNumber = ethers.MaxUint256;

 

      await expect(instance.increaseAllowance(addr1.address, largeNumber))

        .to.emit(instance, "Approval").withArgs(owner.address, addr1.address, largeNumber);

 

      expect(await instance.allowance(owner.address, addr1.address)).to.equal(largeNumber);

      await expect(instance.increaseAllowance(addr1.address, 1)).to.reverted;

    });

 

    it("Should underflow when decreasing allowance below zero", async function () {

      const { instance } = await deployToken();

      const approveAmount = ethers.parseEther("1000");

      await instance.approve(addr1.address, approveAmount);

 

      await expect(instance.decreaseAllowance(addr1.address, approveAmount + 1n))

        .to.reverted;

      expect(await instance.allowance(owner.address, 

addr1.address)).to.equal(approveAmount);

    });

  });

 

  describe("Pausable functionality tests", function () {

Chiliz Token

Presented by Fairyproof10

Fa
ir
yp
ro
of



    it("Should not allow non-pausers to pause/unpause the contract", async function () {

      const { instance } = await deployToken();

 

      await expect(instance.connect(addr1).pause()).to.be.reverted;

      await expect(instance.connect(addr1).unpause()).to.be.reverted;

    });

 

    it("Should pause the contract by pauser and emit Paused event", async function () {

      const { instance } = await deployToken();

 

      await expect(instance.pause()).to.emit(instance, "Paused")

        .withArgs(owner.address);

 

      expect(await instance.paused()).to.equal(true);

    });

 

    it("Should not allow pausing if already paused", async function () {

      const { instance } = await deployToken();

 

      await instance.pause();

      await expect(instance.pause()).to.be.reverted;

    });

 

    it("Should unpause the contract by pauser and emit Unpaused event", async function () {

      const { instance } = await deployToken();

 

      await instance.pause();

      await expect(instance.unpause()).to.emit(instance, "Unpaused")

        .withArgs(owner.address);

 

      expect(await instance.paused()).to.equal(false);

    });

 

    it("Should not allow unpausing if not paused", async function () {

      const { instance } = await deployToken();

 

      await expect(instance.unpause()).to.be.reverted;

    });

 

    // Assuming "transfer" is modified with "whenNotPaused" modifier in the ERC20Pausable 

contract

    it("Should not allow token functions to be called when paused", async function () {

      const { instance } = await deployToken();

      const transferAmount = 1000;

 

      await instance.pause();

      await expect(instance.transfer(addr1.address, transferAmount)).to.be.reverted;

      await expect(instance.approve(addr1.address, transferAmount)).to.be.reverted;

    });

  });

 

  describe("PauserRole functionality tests", function () {

    it("Should set the contract deployer as the initial pauser", async function () {

Chiliz Token

Presented by Fairyproof11

Fa
ir
yp
ro
of



 

2. output:  

      const { instance } = await deployToken();

      expect(await instance.isPauser(owner.address)).to.equal(true);

    });

 

    it("Should allow pauser to add another pauser and emit PauserAdded event", async 

function () {

      const { instance } = await deployToken();

 

      await expect(instance.addPauser(addr1.address)).to.emit(instance, 

"PauserAdded").withArgs(addr1.address);

      expect(await instance.isPauser(addr1.address)).to.equal(true);

    });

 

    it("Should not allow non-pausers to add a pauser", async function () {

      const { instance } = await deployToken();

      await expect(instance.connect(addr1).addPauser(addr1.address)).to.be.reverted;

    });

 

    it("Should allow a pauser to renounce its role and emit PauserRemoved event", async 

function () {

      const { instance } = await deployToken();

      await instance.addPauser(addr1.address);

      await expect(instance.connect(addr1).renouncePauser()).to.emit(instance, 

"PauserRemoved").withArgs(addr1.address);

      expect(await instance.isPauser(addr1.address)).to.equal(false);

    });

 

    it("Should not allow non-pausers to renounce pauser role", async function () {

      const { instance } = await deployToken();

      await expect(instance.connect(addr1).renouncePauser()).to.be.reverted;

    });

  });

});

 

  ChiliZ Token Test

    Deployment test

      ✔ Should set the correct metadata (788ms)
    Transactions test

      ✔ Should transfer tokens between accounts
      ✔ Should be failed if sender doesn’t have enough tokens (55ms)
      ✔ Should be failed if sender transfer to zero address
      ✔ Should be successful if sender transfer to himself (40ms)
      ✔ Should be successful if sender transfer zero amount
      ✔ TransferFrom should need enough allowance (43ms)
    Allowance test

      ✔ Should update the allowance after approving
      ✔ Should overflow when increasing allowance with a very large number

Chiliz Token

Presented by Fairyproof12

Fa
ir
yp
ro
of

af://n266


Index Function Visibility StateMutability Permission Check IsUserInterface Unit Test Notes

1 transfer(address,uint256) public     Yes Passed whenNotPaused

2 transferFrom(address,address,uint256) public     Yes Passed whenNotPaused

3 approve(address,uint256) public     Yes Passed whenNotPaused

6 paused() public view     Passed  

7 pause() public       Passed onlyPauser、whenNotPaused

8 unpause() public       Passed onlyPauser、whenNotPaused

9 isPauser(address) public view     Passed  

10 addPauser(address) public       Passed onlyPauser

11 renouncePauser() public       Passed onlyPauser

12 totalSupply() public view     Passed  

13 balanceOf(address) public view     Passed  

14 allowance(address,address) public view     Passed  

15 increaseAllowance(address,uint256) public     Yes Passed whenNotPaused

16 decreaseAllowance(address,uint256) public     Yes Passed whenNotPaused

17 name() public view     Passed  

18 symbol() public view     Passed  

19 decimals() public view     Passed  

 

 

11.2 External Functions Check Points  
 

1. File: contracts/chiliZ.sol  

(Empty fields in the table represent things that are not required or relevant)

contract: chiliZ is ERC20, ERC20Detailed, ERC20Pausable

 

      ✔ Should underflow when decreasing allowance below zero
    Pausable functionality tests

      ✔ Should not allow non-pausers to pause/unpause the contract
      ✔ Should pause the contract by pauser and emit Paused event
      ✔ Should not allow pausing if already paused
      ✔ Should unpause the contract by pauser and emit Unpaused event
      ✔ Should not allow unpausing if not paused
      ✔ Should not allow token functions to be called when paused
    PauserRole functionality tests

      ✔ Should set the contract deployer as the initial pauser
      ✔ Should allow pauser to add another pauser and emit PauserAdded event (38ms)
      ✔ Should not allow non-pausers to add a pauser
      ✔ Should allow a pauser to renounce its role and emit PauserRemoved event
      ✔ Should not allow non-pausers to renounce pauser role
 

 

  21 passing (1s)

 

Chiliz Token

Presented by Fairyproof13

Fa
ir
yp
ro
of

af://n271
af://n273



	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to Chiliz Token
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08. List of issues by severity
	09. Issue descriptions 
	10. Recommendations to enhance the overall security
	- N/A

	11. Appendices
	11.1 Unit Test 
	1. chiliZ.t.js
	2. output:

	11.2 External Functions Check Points
	1. File: contracts/chiliZ.sol



