
Bobcoin Token

Version 1.0.0

Serial No. 2023042200012018

Presented by Fairyproof

April 22, 2023

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the bobcoin token
issuance project.

Audit Start Time:

April 22, 2023

Audit End Time:

April 22, 2023

Audited Source File's Addresses:

https://polygonscan.com/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf

https://etherscan.io/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf

https://bscscan.com/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf

https://snowtrace.io/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf

The goal of this audit is to review bobcoin’s solidity implementation for its token issuance function, study
potential security vulnerabilities, its general design and architecture, and uncover bugs that could compromise
the software in production.

We make observations on specific areas of the code that present concrete problems, as well as general
observations that traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Bobcoin team for
specified versions. Whenever the code, software, materials, settings, environment etc is changed, the
comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding of known
security patterns and state of the art regarding system security. You agree that your access and/or use,
including but not limited to any associated services, products, protocols, platforms, content, and materials, will
be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming language, or
other programming aspects that could present security risks. If the audited source files are smart contract
files, risks or issues introduced by using data feeds from offchain sources are not extended by this review
either.

Bobcoin Token

Presented by Fairyproof1

Fa
ir
yp
ro
of

af://n2
https://polygonscan.com/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf
https://etherscan.io/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf
https://bscscan.com/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf
https://snowtrace.io/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf
af://n19

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further
testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with this
report, its content, and the related services and products and your use thereof, including, without limitation,
the implied warranties of merchantability, fitness for a particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or
offered by a third party through the product, any open source or third-party software, code, libraries,
materials, or information linked to, called by, referenced by or accessible through the report, its content, and
the related services and products, any hyperlinked websites, any websites or mobile applications appearing on
any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction
between you and any third-party providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY
ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its specifications
were implemented. The codebase was then subject to deep analysis and scrutiny, resulting in a series of
observations. The problems and their potential solutions are discussed in this document and, whenever
possible, we identify common sources for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code Review, Including:

Project Diagnosis

Understanding the size, scope and functionality of your project’s source code based on the specifications,
sources, and instructions provided to Fairyproof.

Manual Code Review

Reading your source code line-by-line to identify potential vulnerabilities.

Specification Comparison

Determining whether your project’s code successfully and efficiently accomplishes or executes its functions
according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:

Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or executed
when test cases are run.

Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to execute its
functions.

Bobcoin Token

Presented by Fairyproof2

Fa
ir
yp
ro
of

af://n27

Serial Number Auditor Audit Time Result

2023042200012018 Fairyproof Security Team Apr 22, 2023 - Apr 22, 2023 Passed

3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest established
industry and academic practices, recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is assigned a
severity level based on the potential impact of the issue and recommendations to fix it, if applicable. For ease
of navigation, an index by topic and another by severity are both provided at the beginning of the report.

— Documentation
For this audit, we used the following source(s) of truth about how the token issuance function should work:

Source Code:

https://polygonscan.com/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf

https://etherscan.io/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf

https://bscscan.com/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf

https://snowtrace.io/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf

These were considered the specification, and when discrepancies arose with the actual code behavior, we
consulted with the bobcoin team or reported an issue.

— Comments from Auditor

Bobcoin Token

Presented by Fairyproof3

Fa
ir
yp
ro
of

af://n61
af://n64
https://polygonscan.com/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf
https://etherscan.io/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf
https://bscscan.com/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf
https://snowtrace.io/token/0x590eb2920486486c2d9bb3eb651f73b81df87bcf
af://n74

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project. During the
audit, no issues were uncovered.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits for
organizations. Fairyproof has developed industry security standards for designing and deploying blockchain
applications.

03. Introduction to bobcoin Token

bobcoin is an ERC-20 token that will be deployed on multiple blockchains

04. Major functions of audited code

The audited code mainly implements a token issuance function. Here are the details:

Bobcoin Token

Presented by Fairyproof4

Fa
ir
yp
ro
of

af://n93
https://www.fairyproof.com/
af://n98
af://n104

Blockchain: Ethereum, Polygon, AVAX, BNB Chain

Token Standard: ERC-20

Token Address:

Ethereum: 0x590eb2920486486c2d9bb3eb651f73b81df87bcf

Polygon: 0x590eb2920486486c2d9bb3eb651f73b81df87bcf

BNB Chain: 0x590eb2920486486c2d9bb3eb651f73b81df87bcf

Snow: 0x590eb2920486486c2d9bb3eb651f73b81df87bcf

Token Name: bobcoin

Token Symbol: BOBC

Burnable: Yes

Note:

This is the token (launched), tokens have been distributed and the original contract has been put in a Timelock
Contract, secured by a multi-sig.

Token holders can burn their own tokens. And authorized addresses can burn another address' tokens as
well.

05. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited to the
following ones:

Access Control
Admin Rights
Arithmetic Precision
Code Improvement
Contract Upgrade/Migration
Delete Trap
Design Vulnerability
DoS Attack
EOA Call Trap
Fake Deposit
Function Visibility
Gas Consumption
Implementation Vulnerability
Inappropriate Callback Function
Injection Attack
Integer Overflow/Underflow
IsContract Trap

Bobcoin Token

Presented by Fairyproof5

Fa
ir
yp
ro
of

af://n132

Miner's Advantage
Misc
Price Manipulation
Proxy selector clashing
Pseudo Random Number
Re-entrancy Attack
Replay Attack
Rollback Attack
Shadow Variable
Slot Conflict
Token Issuance
Tx.origin Authentication
Uninitialized Storage Pointer

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at
some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

07. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks related to the
following functions or areas.

Bobcoin Token

Presented by Fairyproof6

Fa
ir
yp
ro
of

af://n199
af://n213
af://n217

- Function Implementation
We checked whether or not the functions were correctly implemented.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control
We checked each of the functions that could modify a state, especially those functions that could only be
accessed by owner or administrator

We didn't find issues or risks in these functions or areas at the time of writing.

- Token Issuance & Transfer
We examined token issuance and transfers for situations that could harm the interests of holders.

We didn't find issues or risks in these functions or areas at the time of writing.

- State Update
We checked some key state variables which should only be set at initialization.

We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security
We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous
We checked the code for optimization and robustness.

We didn't find issues or risks in these functions or areas at the time of writing.

08. issues by severity

- N/A

Bobcoin Token

Presented by Fairyproof7

Fa
ir
yp
ro
of

af://n217
af://n220
af://n223
af://n226
af://n229
af://n232
af://n236
af://n238
af://n241

09. Issue descriptions

- N/A

10. Recommendations to enhance the overall
security

We list some recommendations in this section. They are not mandatory but will enhance the overall security of
the system if they are adopted.

- N/A

11. Appendices

11.1 Unit Test

1. testToken.t.js

const { expect } = require("chai");

const { ethers } = require("hardhat");

describe("testToken", function () {

 let owner, addr1;

 const totalSupply = ethers.utils.parseUnits("350000000", 18);

 async function deployToken() {

 [owner, addr1] = await ethers.getSigners();

 const TestToken = await ethers.getContractFactory("testToken");

 const instance = await TestToken.deploy(350000000);

 return { instance };

 }

 describe("Deployment test", function () {

Bobcoin Token

Presented by Fairyproof8

Fa
ir
yp
ro
of

af://n241
af://n243
af://n246
af://n250
af://n253
af://n255
af://n257

 it("Should set the correct metadata", async function () {

 const { instance } = await deployToken();

 expect(await instance.totalSupply()).equal(totalSupply);

 expect(await instance.balanceOf(owner.address)).equal(totalSupply);

 expect(await instance.name()).equal("token");

 expect(await instance.symbol()).equal("TK");

 expect(await instance.decimals()).equal(18);

 });

 });

 describe("Transactions test", function () {

 it("Should transfer tokens between accounts", async function () {

 const { instance } = await deployToken();

 const transferAmount = "5000";

 expect(await instance.transfer(addr1.address, transferAmount))

 .be.emit(instance, "Transfer").withArgs(owner.address, addr1.address,

transferAmount);

 expect(await instance.balanceOf(addr1.address)).to.equal(transferAmount);

 });

 it("Should fail if sender doesn’t have enough tokens", async function () {

 const { instance } = await deployToken();

 const initialOwnerBalance = await instance.balanceOf(owner.address);

 await expect(instance.connect(addr1).transfer(owner.address,

1)).to.be.revertedWith("ERC20: transfer amount exceeds balance");

 expect(await instance.balanceOf(owner.address)).to.equal(initialOwnerBalance);

 });

 });

 describe("Allowance test", function () {

 it("Should update the allowance when approving", async function () {

 const { instance } = await deployToken();

 const approveAmount = "1000"

 expect(await instance.approve(addr1.address, approveAmount))

 .to.be.emit(instance, "Approval").withArgs(owner.address, addr1.address,

approveAmount);

 const allowance = await instance.allowance(owner.address, addr1.address);

 expect(allowance).to.equal(approveAmount);

 // increse allowance again

 expect(await instance.increaseAllowance(addr1.address, approveAmount))

 .to.be.emit(instance, "Approval").withArgs(owner.address, addr1.address,

allowance.add(approveAmount));

 expect(await instance.allowance(owner.address,

addr1.address)).to.equal(allowance.add(approveAmount));

 });

 });

 describe("Burn test", function () {

 it("Should burn tokens correctly", async function () {

 const { instance } = await deployToken();

Bobcoin Token

Presented by Fairyproof9

Fa
ir
yp
ro
of

 const initialSupply = await instance.totalSupply();

 const burnAmount = "1000";

 await instance.burn(burnAmount);

 expect(await instance.totalSupply()).to.equal(initialSupply.sub(burnAmount));

 expect(await

instance.balanceOf(owner.address)).to.equal(initialSupply.sub(burnAmount));

 });

 it("Should burn tokens by anyone himself", async function () {

 const { instance } = await deployToken();

 const initialSupply = await instance.totalSupply();

 const burnAmount = "1000";

 await instance.transfer(addr1.address, burnAmount)

 expect(await instance.balanceOf(addr1.address)).to.equal(burnAmount);

 await instance.connect(addr1).burn(burnAmount);

 expect(await instance.totalSupply()).to.equal(initialSupply.sub(burnAmount));

 expect(await instance.balanceOf(addr1.address)).to.equal(0);

 });

 it("Should burnFrom tokens correctly", async function () {

 const { instance } = await deployToken();

 const initialSupply = await instance.totalSupply();

 const burnAmount = "1000";

 await instance.transfer(addr1.address, burnAmount)

 await instance.connect(addr1).approve(owner.address, burnAmount);

 await instance.burnFrom(addr1.address, burnAmount);

 expect(await instance.totalSupply()).to.equal(initialSupply.sub(burnAmount));

 expect(await instance.balanceOf(addr1.address)).to.equal(0);

 });

 });

 describe("Ownership test", function () {

 it("Should transfer and renounce ownership correctly", async function () {

 const { instance } = await deployToken();

 expect(await instance.owner()).to.equal(owner.address);

 await instance.transferOwnership(addr1.address);

 expect(await instance.owner()).to.equal(addr1.address);

 await instance.connect(addr1).renounceOwnership();

 expect(await instance.owner()).to.equal(ethers.constants.AddressZero);

 });

 });

 describe("claimStuckedER20 test", function () {

 it("Should allow the owner to claim stuck tokens", async function () {

 const { instance } = await deployToken();

 const StuckToken = await ethers.getContractFactory("testToken");

 const stuckTokenInstance = await StuckToken.deploy("1000000");

 await stuckTokenInstance.deployed();

Bobcoin Token

Presented by Fairyproof10

Fa
ir
yp
ro
of

2. UnitTestOutput

 const ownerBalance = await stuckTokenInstance.balanceOf(owner.address);

 expect(ownerBalance).to.equal(ethers.utils.parseUnits("1000000", 18));

 // Send stuck tokens to the testToken contract

 await stuckTokenInstance.transfer(instance.address, "5000");

 expect(await

stuckTokenInstance.balanceOf(owner.address)).to.equal(ownerBalance.sub("5000"));

 expect(await stuckTokenInstance.balanceOf(instance.address)).to.equal("5000");

 // Claim stuck tokens

 await instance.claimStuckedER20(stuckTokenInstance.address);

 expect(await stuckTokenInstance.balanceOf(instance.address)).to.equal("0");

 // Check the owner's balance after claiming

 expect(await

stuckTokenInstance.balanceOf(owner.address)).to.equal(ethers.utils.parseUnits("1000000",

18));

 });

 it("Should only owner can claim stuck tokens", async function () {

 const { instance } = await deployToken();

 const StuckToken = await ethers.getContractFactory("testToken");

 const stuckTokenInstance = await StuckToken.deploy("1000000");

 await stuckTokenInstance.deployed();

 await stuckTokenInstance.transfer(instance.address, "5000")

 await

expect(instance.connect(addr1).claimStuckedER20(stuckTokenInstance.address)).to.be.reverted

With("Ownable: caller is not the owner");

 });

 });

});

testToken

 Deployment test

 ✔ Should set the correct metadata (266ms)
 Transactions test

 ✔ Should transfer tokens between accounts (53ms)
 ✔ Should fail if sender doesn’t have enough tokens (67ms)
 Allowance test

 ✔ Should update the allowance when approving (49ms)
 Burn test

 ✔ Should burn tokens correctly (45ms)
 ✔ Should burn tokens by anyone himself (47ms)
 ✔ Should burnFrom tokens correctly (50ms)
 Ownership test

 ✔ Should transfer and renounce ownership correctly (41ms)
 claimStuckedER20 test

 ✔ Should allow the owner to claim stuck tokens (68ms)

Bobcoin Token

Presented by Fairyproof11

Fa
ir
yp
ro
of

af://n261

Index Function Visibility
Permission
Check

Re-entrancy
Check

Injection
Check

Unit Test Notes

1 claimStuckedER20(address) external onlyOwner Passed

2 owner() public Passed view

3 renounceOwnership() public onlyOwner Passed

4 transferOwnership(address) public onlyOwner Passed

5 burn(uint256) public Passed

6 burnFrom(address,uint256) public Passed

7 name() public Passed view

8 symbol() public Passed view

9 decimals() public Passed view

10 totalSupply() public Passed view

11 balanceOf(address) public Passed view

12 transfer(address,uint256) public Passed

13 allowance(address,address) public Passed view

14 approve(address,uint256) public Passed

15 transferFrom(address,address,uint256) public Passed

16 increaseAllowance(address,uint256) public Passed

17 decreaseAllowance(address,uint256) public Passed

11.2 External Functions Check Points

1. Token.sol

(Empty fields in the table represent things that are not required or relevant)

contract: testToken is ERC20, ERC20Burnable, Ownable

 ✔ Should only owner can claim stuck tokens (57ms)

Bobcoin Token

Presented by Fairyproof12

Fa
ir
yp
ro
of

af://n266
af://n268

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to bobcoin Token
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08. issues by severity
	- N/A

	09. Issue descriptions
	- N/A

	10. Recommendations to enhance the overall security
	- N/A

	11. Appendices
	11.1 Unit Test
	1. testToken.t.js
	2. UnitTestOutput

	11.2 External Functions Check Points
	1. Token.sol

