

 Version 1.0.0

 Serial No. 2021101100012011

 Presented by Fairyproof

 October 11, 2021

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Tether USD Token.

Audit Start Time:

October 11, 2021

Audit End Time:

October 11, 2021

Token's Name:

Tether USD

Token's Symbol:

USDT

Token's Precisions:

6

Token's Ethereum Address:

0xdAC17F958D2ee523a2206206994597C13D831ec7

Audited Source File's Address:

https://etherscan.io/address/0xdAC17F958D2ee523a2206206994597C13D831ec7

The goal of this audit is to review Tether USD’s token issurance function, study potential security
vulnerabilities, its general design and architecture, and uncover bugs that could compromise the software in
production.

We make observations on specific areas of the code that present concrete problems, as well as general
observations that traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Tether team for
specified versions. Whenever the code, software, materials, settings, enviroment etc is changed, the
comments of this audit will no longer apply.

— Disclaimer

https://etherscan.io/address/0xdAC17F958D2ee523a2206206994597C13D831ec7

Note that as of the date of publishing, the contents of this report reflect the current understanding of
known security patterns and state of the art regarding system security. You agree that your access and/or
use, including but not limited to any associated services, products, protocols, platforms, content, and
materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming language, or
other programming aspects that could present security risks. If the audited source files are smart contract
files, risks or issues introduced by using data feeds from offchain sources are not extended by this review
either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further
testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with
this report, its content, and the related services and products and your use thereof, including, without
limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or
offered by a third party through the product, any open source or third-party software, code, libraries,
materials, or information linked to, called by, referenced by or accessible through the report, its content,
and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any
transaction between you and any third-party providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING
ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny, resulting in
a series of observations. The problems and their potential solutions are discussed in this document and,
whenever possible, we identify common sources for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure we
understand the size, scope, and functionality of the project's source code.
ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to
identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what the
specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually
covering the code and how much code is exercised when we run the test cases.
ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a
program to execute.

3. Best practices review, which is a review of the source code to improve maintainability, security, and
control based on the established industry and academic practices, recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is assigned a
severity level based on the potential impact of the issue and recommendations to fix it, if applicable. For
ease of navigation, an index by topic and another by severity are both provided at the beginning of the
report.

— Documentation
For this audit, we used the following source of truth about how the token issurance should work:

https://tether.to/

This was considered the specification.

— Comments from Auditor
No vulnerabilities with critical, high, medium or low-severity were found in the above source code.

Additional notice: 0.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits
for organizations. Fairyproof has developed industry security standards for designing and deploying
blockchain applications.

03. Major functions of audited code

https://tether.to/
https://www.fairyproof.com/

The audited code implements a token issurance function. Here are the details:

Name: Tether USD

Symbol: USDT

Precisions: 6

Max Supply: No upper limit

Flexible Token Supply: the token supply can be increased

Transaction Fee: up to 0.2% or 50 USDT. It is 0 for now.

Other functions:

A blacklist: blacklisted addresses cannot transfer tokens
Pausing transactions: transfer of USDT can be paused
Contract upgradable

04. Admin rights

The Admin's access control has been transferred to MultiSigWallet whose address is
0xC6CDE7C39eB2f0F0095F41570af89eFC2C1Ea828 (Ethereum).

The Admin has the following access rights:

Editing blacklist: the Admin can add/remove addresses to/from the blacklist and burn the USDT tokens
held by the blacklisted addresses
Pausing/Resuming transactions
Upgrading contracts: for more details please refer to deprecate
Increasing token supply
Burning USDTs held by the Admin itself
Setting core parameters such as transaction fees etc

05. Key points in audit

During the audit we reviewed possible vulnerabilities in token issurance.

- Integer Overflow/Underflow
We checked all the code sections, which had arithmetic operations and might introduce integer overflow or
underflow if no safe libraries were used. All of them used safe libraries.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control
We checked each of the functions that could modify a state, especially those functions that could only be
accessed by "owner".

We didn't find issues or risks in these functions or areas at the time of writing.

- Admin Rights
We checked whether or not the Admin had potentially risky rights and whether or not the potentially risky
rights had been transferred to multi-sig wallets.

We didn't find issues or risks in these functions or areas at the time of writing.

- State Update
We checked some key state variables which should only be set at initialization.

We didn't find issues or risks in these functions or areas at the time of writing.

06. Coverage of issues
The issues that the Fairyproof team covered when conducting the audit include but are not limited to the
following ones:

Re-entrancy Attack
DDos Attack
Integer Overflow
Function Visibility
Logic Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision

Tx.origin
Shadow Variable
Design Vulnerability
Token Issurance
Asset Security
Access Control

07. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at
some point in the future.

08. List of issues by severity

A. Critical

- N/A

B. High

- N/A

C. Medium

- N/A

D. Low

- N/A

09. List of issues by source file

- N/A

10. Issue descriptions

- N/A

11. Recommendations to enhance the overall
security

We list some recommendations in this section. They are not mandatory but will enhance the overall security
of the system if they are adopted.

- Consider Doing Contract Audits Prior to Contract
Upgrade

- Consider Using A Safe Library to Transfer and Approve
The transfer , transferFrom and approve functions don't return bool values. Therefore when each of
them is called its caller needs to handle its final state, otherwise the transaction may fail. Consider using
safe functions in the TransferHelper library as follows:

// helper methods for interacting with ERC20 tokens and sending ETH that do not

consistently return true/false

library TransferHelper {

 function safeApprove(address token, address to, uint value) internal {

 // bytes4(keccak256(bytes('approve(address,uint256)')));

 (bool success, bytes memory data) =

token.call(abi.encodeWithSelector(0x095ea7b3, to, value));

 require(success && (data.length == 0 || abi.decode(data, (bool))),

'TransferHelper: APPROVE_FAILED');

 }

 function safeTransfer(address token, address to, uint value) internal {

 // bytes4(keccak256(bytes('transfer(address,uint256)')));

 (bool success, bytes memory data) =

token.call(abi.encodeWithSelector(0xa9059cbb, to, value));

 require(success && (data.length == 0 || abi.decode(data, (bool))),

'TransferHelper: TRANSFER_FAILED');

 }

 function safeTransferFrom(address token, address from, address to, uint value)

internal {

 // bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));

 (bool success, bytes memory data) =

token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));

 require(success && (data.length == 0 || abi.decode(data, (bool))),

'TransferHelper: TRANSFER_FROM_FAILED');

 }

}

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Major functions of audited code
	04. Admin rights
	05. Key points in audit
	- Integer Overflow/Underflow
	- Access Control
	- Admin Rights
	- State Update

	06. Coverage of issues
	07. Severity level reference
	08. List of issues by severity
	A. Critical
	- N/A

	B. High
	- N/A

	C. Medium
	- N/A

	D. Low
	- N/A

	09. List of issues by source file
	- N/A

	10. Issue descriptions
	- N/A

	11. Recommendations to enhance the overall security
	- Consider Doing Contract Audits Prior to Contract Upgrade
	- Consider Using A Safe Library to Transfer and Approve

