

 Version 1.0.0

 Serial No. 2021102200022014

 Presented by Fairyproof

 October 22, 2021

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Depth Stable Coin
Staking V2 application, at the request of the Depth team.

Audit Start Time:

October 13, 2021

Audit End Time:

October 14, 2021

Project Token's Name:

Depth Token

Audited Code's Github Repository:

https://github.com/depthfinance/contract/tree/main/BSCContracts

Audited Code's Github Commit Number When Audit Started:

a4bab7e0c49a3b95c9058be7f59325ae8767be79

Audited Source Files:

The calculated SHA-256 values for the audited files when the audit was done are as follows:

BDepMining.sol:
0x2165ae5038fb5b589a4bfbcee3ee1bd3663060f762f473e420eb2eb13466e9c8

BDepToken.sol:
0x59c6100fd427f1cce8dd0b529443840b78ad44996e5e6c577451809b058952da

SellLendPlatformToken.sol:
0x10ccdc1b9e4490d73845fcb88eb2ff1a623de838445b359ef3dbfbc457a3db87

threePools.vy:
0x032245da7bf923dff100a853020189387e86603ee6b5f338e30b23d5e1c3a5fc

FundingManager.sol:
0x6e51e304c4c430a796e77d3e8e748f0fcc8f4782c25c5a27681592b6b408a16c

dCowVault.sol:
0xd6c0e65fb109ed497e44cd8f175309e95a9d52df518dd598e18b8db4fac8f2de

dDepAlphaVault.sol:

https://github.com/depthfinance/contract/tree/main/BSCContracts

The source files audited include all the files with the extension "sol" as follows:

The goal of this audit is to review Depth's solidity implementation for its token issurance and stable coin
staking functions, study potential security vulnerabilities, its general design and architecture, and uncover
bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as general
observations that traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Depth team for
specified versions. Whenever the code, software, materials, settings, enviroment etc is changed, the
comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding of
known security patterns and state of the art regarding system security. You agree that your access and/or
use, including but not limited to any associated services, products, protocols, platforms, content, and
materials, will be at your sole risk.

0x34c80482732ddc4a69e5f41556a910123713e24f89a714a51de1ed432fd40443

dDepBxhVault.sol:
0x3d8016dcdbc602f4a31a76972209449fb634cba1861d5c3d2ceb52e320e4b124

dDepVenusVault.sol:
0x8e69f76a4c4d96aee73703bde21198d0dfda80b17e8253ba647b790d23ec7ec7

contracts/
!"" BDepMining.sol
!"" BDepToken.sol
!"" Channels-3Pool
| !"" SellLendPlatformToken.sol
| #"" threePools.vy
!"" FundingManager.sol
#"" vault
 !"" dCowVault.sol
 !"" dDepAlphaVault.sol
 !"" dDepBxhVault.sol
 #"" dDepVenusVault.sol

The review does not extend to the compiler layer, or any other areas beyond the programming language, or
other programming aspects that could present security risks. If the audited source files are smart contract
files, risks or issues introduced by using data feeds from offchain sources are not extended by this review
either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further
testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with
this report, its content, and the related services and products and your use thereof, including, without
limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or
offered by a third party through the product, any open source or third-party software, code, libraries,
materials, or information linked to, called by, referenced by or accessible through the report, its content,
and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any
transaction between you and any third-party providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING
ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny, resulting in
a series of observations. The problems and their potential solutions are discussed in this document and,
whenever possible, we identify common sources for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure we
understand the size, scope, and functionality of the project's source code.
ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to
identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what the
specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually
covering the code and how much code is exercised when we run the test cases.
ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a
program to execute.

3. Best practices review, which is a review of the source code to improve maintainability, security, and
control based on the established industry and academic practices, recommendations, and research.

— Structure of the document

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is assigned a
severity level based on the potential impact of the issue and recommendations to fix it, if applicable. For
ease of navigation, an index by topic and another by severity are both provided at the beginning of the
report.

— Documentation
For this audit, we used the following sources of truth about how the token issurance and stable coin staking
should work:

https://depth.fi/

whitepaper

These were considered the specification, and when discrepancies arose with the actual code behavior, we
consulted with the Depth team or reported an issue.

— Comments from Auditor
No vulnerabilities with critical, high, medium or low-severity were found in the above source code.

Additional notice: 0.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits
for organizations. Fairyproof has developed industry security standards for designing and deploying
blockchain applications.

03. Introduction to Depth

https://depth.fi/
https://docs.depth.fi/v/cn/product/vault
https://www.fairyproof.com/

Depth is a stable coin based decentralized DeFi aggregator.

04. Major functions of audited code

The audited code mainly implements the following functions:

Issurance of BDepToken

Name: Depth Token

Symbol: BDEP

Precisions: 18

Max supply: infinite

Users deposit stable coins and stake the deposit certificates to earn rewards in DEP

05. Key points in audit

During the audit, we worked closely with the Depth team, and helped the team fix some bugs and refine
some code. Here are the main details:

- Optimized Implementation to Reduce Gas Consumption
In the BDepMining.sol file, lines 311 and 317 can be optimized to reduce the gas consumption. Here was
the code section:

Recommendation:

if (enableClaimBlock <= block.number) {
 IERC20(Dep).safeTransfer(msg.sender, pending);
 if (user.pendingReward > 0) {
 IERC20(Dep).safeTransfer(msg.sender, user.pendingReward);
 }

Consider combining the two safeTransfers to one. Here is a recommended change:

Update: it has been fixed in the latest audited code.

- Fixed A Bug in Conditional Check
In line 356 of the threePools.vy file, the if statement was incorrect. Here was the code section:

Both line 188 and line 194 of the dDepAlphaVault.sol file should use >= . Here was the code section:

Line 245 of the dDepAlphaVault.sol file should use >= . Here was the code section:

Line 371 of the BDepMining.sol file should be moved to the if directive in line 366. Here was the code
section:

Recommendation:

Consider making changes as follows:

Changing line 365 of the threePools.vy file from:

if (enableClaimBlock <= block.number) {
 //Remove code
 //IERC20(Dep).safeTransfer(msg.sender, pending);
 if (user.pendingReward > 0) {
 //Remove code
 //IERC20(Dep).safeTransfer(msg.sender, user.pendingReward);
 //Add code
 pending = pending.add(user.pendingReward);
 user.pendingReward = 0;
 }
 //Add code
 IERC20(Dep).safeTransfer(msg.sender, pending);

if cERC20(self.c_tokens[index]).balanceOf(self) *
cERC20(self.c_tokens[index]).exchangeRateStored() / PRECISION > PRECISION -
self.balances[index]:

require(_after.sub(_before)>_amount, "sub flow!");

require(_after.sub(_before)>_claimAmount, "sub flow!");

IERC20(Dep).safeTransfer(msg.sender, pending);

to:

Changing both line 188 and line 194 of the dDepAlphaVault.sol file from:

to:

Changing line 245 of the dDepAlphaVault.sol file from:

to:

Moving line 371 of the BDepMining.sol file to the if directive in line 366

Update: it has been fixed in the latest audited code.

- Optimized Implementation to Improve Efficiency
In line 452 of the BDepMining.sol file, the _deleteQueueAt function was redundant. Here was the code
section:

Line 468 could be replaced with queues.pop()

if cERC20(self.c_tokens[index]).balanceOf(self) *
cERC20(self.c_tokens[index]).exchangeRateStored() / PRECISION > PRECISION -
self.balances[index]:

if cERC20(self.c_tokens[index]).balanceOf(self) *
cERC20(self.c_tokens[index]).exchangeRateStored() / PRECISION > self.balances[index]:

require(_after.sub(_before)>_amount, "sub flow!");

require(_after.sub(_before)>=_amount, "sub flow!");

require(_after.sub(_before)>_claimAmount, "sub flow!");

require(_after.sub(_before)>=_claimAmount, "sub flow!");

function _deleteQueueAt(uint256 _pid,uint256 index) private {
 UnlockQueue[] storage queues = userUnlockQueues[_pid][msg.sender];
 for (uint256 i = index; i < queues.length - 1; i++) {
 queues[i] = queues[i + 1];
 }
 queues.pop();
 }

In line 115 of the dDepVenusVault.sol file, the withdraw function could be optimized. Here was the code
section:

Recommendation:

Consider making changes as follows:

Deleting the _deleteQueueAt function in line 452 of the BDepMining.sol file. Replacing line 468 with
queues.pop()

Changing the withdraw funcion in line 115 of the dDepVenusVault.sol file from:

address _comptrollerAddress = VToken(vTokenAddress).comptroller();
if (IComptroller(address(_comptrollerAddress)).treasuryPercent() != 0) {

 RedeemLocalVars memory vars;
 vars.redeemAmount = _amount;

 uint feeAmount;
 uint remainedAmount;
 (vars.mathErr, feeAmount) = mulUInt(vars.redeemAmount,
IComptroller(address(_comptrollerAddress)).treasuryPercent());
 if (vars.mathErr != CarefulMath.MathError.NO_ERROR) {
 return;
 }

 (vars.mathErr, feeAmount) = divUInt(feeAmount, 1e18);
 if (vars.mathErr != CarefulMath.MathError.NO_ERROR) {
 return;
 }

 (vars.mathErr, remainedAmount) = subUInt(vars.redeemAmount, feeAmount);

 _amount = remainedAmount;
}

address _comptrollerAddress = VToken(vTokenAddress).comptroller();
if (IComptroller(address(_comptrollerAddress)).treasuryPercent() != 0) {

 RedeemLocalVars memory vars;
 vars.redeemAmount = _amount;

 uint feeAmount;
 uint remainedAmount;
 (vars.mathErr, feeAmount) = mulUInt(vars.redeemAmount,
IComptroller(address(_comptrollerAddress)).treasuryPercent());
 if (vars.mathErr != CarefulMath.MathError.NO_ERROR) {
 return;
 }

to:

Update: it has been fixed in the latest audited code.

06. Coverage of issues
The issues that the Fairyproof team covered when conducting the audit include but are not limited to the
following ones:

Re-entrancy Attack
DDos Attack
Integer Overflow
Function Visibility
Logic Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Shadow Variable
Design Vulnerability
Token Issurance
Asset Security
Access Control

 (vars.mathErr, feeAmount) = divUInt(feeAmount, 1e18);
 if (vars.mathErr != CarefulMath.MathError.NO_ERROR) {
 return;
 }

 (vars.mathErr, remainedAmount) = subUInt(vars.redeemAmount, feeAmount);

 _amount = remainedAmount;
}

uint256 beforeVaule = IERC20(want).balanceOf(address(this));
require(VToken(vTokenAddress).redeemUnderlying(_amount) == 0, "!withdraw");
uint256 afterVaule = IERC20(want).balanceOf(address(this));
uint256 getValue = afterVaule.sub(beforeVaule);
require(getValue>0, "invalid amount, !withdraw");

07. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at
some point in the future.

08. Major areas that need attention

Based on the provided souce code the Fairyproof team focused on the possible issues and risks related to
the following functions or areas.

- Integer Overflow/Underflow
We checked all the code sections, which had arithmetic operations and might introduce integer overflow or
underflow if no safe libraries were used. All of them used safe libraries.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control
We checked each of the functions that could modify a state, especially those functions that could only be
accessed by "owner".

We didn't find issues or risks in these functions or areas at the time of writing.

- Parameter Setting
We checked whether or not some core parameters were incorrectly set.

We didn't find issues or risks in these functions or areas at the time of writing.

- Gas Consumption
We checked whether or not the gas consumption in the implementation could be reduced.

We found an issue and helped the GWC team fix it.

- Logic Issues
We checked whether or not there were issues in the logic design.

We found an issue and helped the GWC team fix it.

- Code Optimization
We checked whether or not the code could be optimized.

We found an issue and helped the GWC team fix it.

- Asset Security
We checked whether or not all the functions that transfer assets are safely hanlded.

We didn't find issues or risks in these functions or areas at the time of writing.

- Contract Migration/Upgrade
We checked whether or not the contract files introduce issues or risks associated with contract
migration/upgrade.

We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous
We didn't find issues or risks in other functions or areas at the time of writing.

09. List of issues by severity

A. Critical

- N/A

B. High

- N/A

C. Medium

- N/A

D. Low

- N/A

10. List of issues by source file

- N/A

11. Issue descriptions

11. Issue descriptions

- N/A

12. Recommendations to enhance the overall
security

We list some recommendations in this section. They are not mandatory but will enhance the overall security
of the system if they are adopted.

- N/A

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to Depth
	04. Major functions of audited code
	05. Key points in audit
	- Optimized Implementation to Reduce Gas Consumption
	- Fixed A Bug in Conditional Check
	- Optimized Implementation to Improve Efficiency

	06. Coverage of issues
	07. Severity level reference
	08. Major areas that need attention
	- Integer Overflow/Underflow
	- Access Control
	- Parameter Setting
	- Gas Consumption
	- Logic Issues
	- Code Optimization
	- Asset Security
	- Contract Migration/Upgrade
	- Miscellaneous

	09. List of issues by severity
	A. Critical
	- N/A

	B. High
	- N/A

	C. Medium
	- N/A

	D. Low
	- N/A

	10. List of issues by source file
	- N/A

	11. Issue descriptions
	- N/A

	12. Recommendations to enhance the overall security
	- N/A

