

 Version 1.0.0

 Serial No. 2021102500012016

 Presented by Fairyproof

 October 25, 2021

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the ApeSwap project.

Audit Start Time:

October 18, 2021

Audit End Time:

October 22, 2021

Audited Source Files' URL Addresses:

ApeFactory.sol: https://bscscan.com/address/0x0841BD0B734E4F5853f0dD8d7Ea041c241fb0Da6#code

ApeRouter.sol: https://bscscan.com/address/0xcF0feBd3f17CEf5b47b0cD257aCf6025c5BFf3b7#code

BananaToken: https://bscscan.com/address/0x603c7f932ED1fc6575303D8Fb018fDCBb0f39a95#code

MasterApe: https://bscscan.com/address/0x5c8D727b265DBAfaba67E050f2f739cAeEB4A6F9#code

Timelock: https://bscscan.com/address/0x2F07969090a2E9247C761747EA2358E5bB033460#code

BananaSplitBar: https://bscscan.com/address/0x86ef5e73edb2fea111909fe35afcc564572acc06#code

The audit only covered the above 6 files which mainly implement ApeSwap Finance's staking, token
issurance and DEX functions.

Note: the third-party libraries this project relies on were not covered by the audit.

The goal of this audit is to review ApeSwap Finance’s solidity implementation for its staking, token issurance
and DEX functions, study potential security vulnerabilities, its general design and architecture, and uncover
bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as general
observations that traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the ApeSwap Finance
team for specified versions. Whenever the code, software, materials, settings, enviroment etc is changed,
the comments of this audit will no longer apply.

https://bscscan.com/address/0x0841BD0B734E4F5853f0dD8d7Ea041c241fb0Da6#code
https://bscscan.com/address/0xcF0feBd3f17CEf5b47b0cD257aCf6025c5BFf3b7#code
https://bscscan.com/address/0x603c7f932ED1fc6575303D8Fb018fDCBb0f39a95#code
https://bscscan.com/address/0x5c8D727b265DBAfaba67E050f2f739cAeEB4A6F9#code
https://bscscan.com/address/0x2F07969090a2E9247C761747EA2358E5bB033460#code
https://bscscan.com/address/0x86ef5e73edb2fea111909fe35afcc564572acc06#code

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding of
known security patterns and state of the art regarding system security. You agree that your access and/or
use, including but not limited to any associated services, products, protocols, platforms, content, and
materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming language, or
other programming aspects that could present security risks. If the audited source files are smart contract
files, risks or issues introduced by using data feeds from offchain sources are not extended by this review
either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further
testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with
this report, its content, and the related services and products and your use thereof, including, without
limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or
offered by a third party through the product, any open source or third-party software, code, libraries,
materials, or information linked to, called by, referenced by or accessible through the report, its content,
and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any
transaction between you and any third-party providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING
ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny, resulting in
a series of observations. The problems and their potential solutions are discussed in this document and,
whenever possible, we identify common sources for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure we
understand the size, scope, and functionality of the project's source code.
ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to
identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what the
specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:

i. Test coverage analysis, which is the process of determining whether the test cases are actually
covering the code and how much code is exercised when we run the test cases.
ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a
program to execute.

3. Best practices review, which is a review of the source code to improve maintainability, security, and
control based on the established industry and academic practices, recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is assigned a
severity level based on the potential impact of the issue and recommendations to fix it, if applicable. For
ease of navigation, an index by topic and another by severity are both provided at the beginning of the
report.

— Documentation
For this audit, we used the following sources of truth about how the staking, token issurance and DEX
functions should work:

https://apeswap.finance/

 whitepaper

These were considered the specification.

— Comments from Auditor
No vulnerabilities with critical, high or medium-severity were found in the above source code.

Two vulnerabilities with low-severity were found in the above source code.

Additional notice: 0.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits
for organizations. Fairyproof has developed industry security standards for designing and deploying
blockchain applications.

https://apeswap.finance/
https://apeswap.gitbook.io/apeswap-finance/
https://www.fairyproof.com/

03. Introduction to ApeSwap Finance

ApeSwap is a leading decentralized exchange (DEX) on Binance Smart Chain and Polygon focused on
offering a premier trading experience. Users are incentivized to pool liquidity on ApeSwap through yield
farming to earn the native currency, $BANANA. Additionally, apes can use their earned $BANANA to stake
and earn other tokens and unlock exclusive features. Built by DeFi apes, for DeFi apes, we have a dedicated
team with years of experience who are committed to the DeFi community and growing the ApeSwap Jungle.

04. Major functions of audited code

The audited code mainly implements the following functions:

- AMM Based DEX
A DEX like Uniswap V2
The transaction charge is 0.2% among which one fourth is sent to the DEX's corresponding pool and
the remaining three fourths is shared by the corresponding LP's providers.

- Issurance of The BANANA Token
The BANANA token is a BEP20 based token

Name: ApeSwapFinance Banana

Symbol: BANANA

Precisions: 18

Max Supply: flexible max supply

Misc:

The Banana token can be used to vote in governance

- Issurance of The BANANASPLIT Token

- Issurance of The BANANASPLIT Token
The BANANASPLIT token is a BEP20 based token

Name: BananaSplitBar Token

Symbol: BANANASPLIT

Precisions: 18

Max Supply: flexible max supply

Burnable: yes

Misc:

The BANANASPLIT token can be used to vote in governance

Note: in ApeSwap, the BANANASPLIT token is a certificate token minted and burned by the MasterApe
contract for a liquidity provider.

- MasterApe
This contract's functions are similar to Sushi's MasterChef V1's functions:

After the contract is deployed, by default a number 0 pool will be added and the crypto token that can
be staked in this pool is BANANA. After users stake their BANANA tokens in this pool, they will get the
BANANASPLIT tokens accordingly. When users withdraw their BANANA tokens their BANANASPLIT
tokens will be burned.

Note:

This contract doesn't work with a token whose total supply is decreasing.
This contract doesn't work with a scenario in which the staked token and the reward token are the
same

- Timelock
This is a timelock contract like SushiSwap's Timelock.

05. Admin rights

The admin has the following previlleges:

adding new pools for staking
modifying the core parameters of the staking reward mechanism

06. Key points in audit

During the audit Fairyproof mainly worked on the following items:

- Integer Overflow/Underflow
We checked all the code sections, which had arithmetic operations and might introduce integer overflow or
underflow if no safe libraries were used. All of them used safe libraries.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control
We checked each of the functions that could modify a state, especially those functions that could only be
accessed by "owner".

We didn't find issues or risks in these functions or areas at the time of writing.

- Admin Rights
We checked whether or not the admin had inappropriate rights to access crypto assets.

We didn't find issues or risks in these functions or areas at the time of writing.

- State Update
We checked some key state variables which should only be set at initialization.

We didn't find issues or risks in these functions or areas at the time of writing.

- Timelock
We checked whether or not now was appropriately used in time stampes to calculate timelocks.

We didn't find issues or risks in these functions or areas at the time of writing.

- Calculation of Precision
We checked whether or not the calculation of precision in all the division operations was properly handled.

We didn't find issues or risks in these functions or areas at the time of writing.

- Governance Security
We checked whether or not there were potential issues in the governance mechanism.

We found an issue. For more details please refer to "10 Issue descriptions".

- AMM Based DEX Security
We checked whether or not there were potential issues or risks in the AMM based DEX's mechanism.

We didn't find issues or risks in these functions or areas at the time of writing.

- Token Issurance
We checked whether or not there were potential issues or risks in the token issurance mechanisms

We found an issue. For more details please refer to "10 Issue descriptions".

07. Coverage of issues
The issues that the Fairyproof team covered when conducting the audit include but are not limited to the
following ones:

Re-entrancy Attack
DDos Attack
Integer Overflow
Function Visibility
Logic Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Shadow Variable

Design Vulnerability
Token Issurance
Asset Security
Access Control

08. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at
some point in the future.

09. List of issues by severity

A. Critical

- N/A

B. High

- N/A

C. Medium

- N/A

D. Low

- Double-spend Risk in Voting with BANANA Or BANANASPLIT

- Issue in BANANASPLIT's Burn Function

10. Issue descriptions

- Double-spend Risk in Voting with BANANA Or
BANANASPLIT: Low

Source and Description:

The transfer and transferFrom functions in both the BananaToken.sol and the BananaSplitBar.sol
contract files have potential double-spend risks.

The BANANA token and the BANANASPLIT token can be used to vote in governance. A user's voting weight
is positively correlated with the amount of the BANANA or BANANASPLIT tokens he/she holds. After a user
transfers his/her BANANA or BANANASPLIT tokens the voting weight that corresponds to the amount of
tokens transferred should be transferred as well otherwise a double-spend risk in voting may be exposed.
The existing implementation doesn't transfer the token's voting weight.

Recommendation:

Consider tansferring voting weight when transferring the two tokens with transfer or transferFrom , or
not enabling the voting functions with these two tokens

- Issue in BANANASPLIT's Burn Function: Low

Source and Description:

The emergencyWithdraw function defined in line 308 to line 315 of the MasterApe.sol contract file may
impact the BANANASPLIT token's burn function.

In the 0 pool, after users stake their BANANA tokens they will get the same amount of the BANANASPLIT
token. When they withdraw their BANANA tokens from the pool their BANANASPLIT tokens will be burned.
The emergencyWithdraw function can be used to withdraw users' staked tokens as well. But this function
doesn't burn users' BANANASPLIT tokens if it is used to withdraw users' staked tokens. Therefore malicious
actors can use this function to repeat the staking and withdrawal actions to accrue the BANANASPLIT token.

Recommendation:

Consider adding a code implementation in the emergencyWithdraw function to burn the corresponding
BANANASPLIT tokens for the withdrawn BANANA tokens.

Or consider not using the BANANASPLIT tokens that are in circulation after the contracts are deployed
otherwise the DApps or services that use the BANANASPLIT tokens may suffer losses in assets.

11. Recommendations to enhance the overall
security

We list some recommendations in this section. They are not mandatory but will enhance the overall security
of the system if they are adopted.

- Updating Contract States Prior to Contract Interaction
The emergencyWithdraw function defined in line 311 to line 314 of the MasterApe.sol file has the
following code section:

This code section does't follow the common rule of updating contract states prior to contract interacton.

Consider updating contract states prior to contract interacton.

 pool.lpToken.safeTransfer(address(msg.sender), user.amount);
 emit EmergencyWithdraw(msg.sender, _pid, user.amount);
 user.amount = 0;
 user.rewardDebt = 0;

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to ApeSwap Finance
	04. Major functions of audited code
	- AMM Based DEX
	- Issurance of The BANANA Token
	- Issurance of The BANANASPLIT Token
	- MasterApe
	- Timelock

	05. Admin rights
	06. Key points in audit
	- Integer Overflow/Underflow
	- Access Control
	- Admin Rights
	- State Update
	- Timelock
	- Calculation of Precision
	- Governance Security
	- AMM Based DEX Security
	- Token Issurance

	07. Coverage of issues
	08. Severity level reference
	09. List of issues by severity
	A. Critical
	- N/A

	B. High
	- N/A

	C. Medium
	- N/A

	D. Low
	- Double-spend Risk in Voting with BANANA Or BANANASPLIT
	- Issue in BANANASPLIT's Burn Function

	10. Issue descriptions
	- Double-spend Risk in Voting with BANANA Or BANANASPLIT: Low
	- Issue in BANANASPLIT's Burn Function: Low

	11. Recommendations to enhance the overall security
	- Updating Contract States Prior to Contract Interaction

