

 Version 1.0.0

 Serial No. 2021101500012015

 Presented by Fairyproof

 October 15, 2021

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the IDEX2.0 project.

Audit Start Time:

October 11, 2021

Audit End Time:

October 14, 2021

Audited Source Files' Ethereum Onchain Addresses:

Governance: 0xC883C1774BC4e699dFd3ABD122FDB751702B7146

Exchange: 0xA36972E347E538E6C7Afb9f44FB10DDa7BBa9BA2

Custodian: 0xE5c405C5578d84c5231D3a9a29Ef4374423fA0c2

Audited Contract Files' Addresses:

https://etherscan.io/address/0xC883C1774BC4e699dFd3ABD122FDB751702B7146#code

https://etherscan.io/address/0xA36972E347E538E6C7Afb9f44FB10DDa7BBa9BA2#code

https://etherscan.io/address/0xE5c405C5578d84c5231D3a9a29Ef4374423fA0c2#code

The goal of this audit is to review IDEX’s solidity implementation for its decentralized exchange, study
potential security vulnerabilities, its general design and architecture, and uncover bugs that could
compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as general
observations that traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the IDEX team for
specified versions. Whenever the code, software, materials, settings, enviroment etc is changed, the
comments of this audit will no longer apply.

— Disclaimer

https://etherscan.io/address/0xC883C1774BC4e699dFd3ABD122FDB751702B7146#code
https://etherscan.io/address/0xA36972E347E538E6C7Afb9f44FB10DDa7BBa9BA2#code
https://etherscan.io/address/0xE5c405C5578d84c5231D3a9a29Ef4374423fA0c2#code

Note that as of the date of publishing, the contents of this report reflect the current understanding of
known security patterns and state of the art regarding system security. You agree that your access and/or
use, including but not limited to any associated services, products, protocols, platforms, content, and
materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming language, or
other programming aspects that could present security risks. If the audited source files are smart contract
files, risks or issues introduced by using data feeds from offchain sources are not extended by this review
either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further
testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with
this report, its content, and the related services and products and your use thereof, including, without
limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or
offered by a third party through the product, any open source or third-party software, code, libraries,
materials, or information linked to, called by, referenced by or accessible through the report, its content,
and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any
transaction between you and any third-party providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING
ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny, resulting in
a series of observations. The problems and their potential solutions are discussed in this document and,
whenever possible, we identify common sources for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure we
understand the size, scope, and functionality of the project's source code.
ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to
identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what the
specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually
covering the code and how much code is exercised when we run the test cases.
ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a
program to execute.

3. Best practices review, which is a review of the source code to improve maintainability, security, and
control based on the established industry and academic practices, recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is assigned a
severity level based on the potential impact of the issue and recommendations to fix it, if applicable. For
ease of navigation, an index by topic and another by severity are both provided at the beginning of the
report.

— Documentation
For this audit, we used the following sources of truth about how the decentralized exchange system should
work:

https://idex.io/

project docs

These were considered the specification.

— Comments from Auditor
No vulnerabilities with critical, high or medium-severity were found in the above source code.

One vulnerability with low-severity was found in the above source code.

Additional notice: 0.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits
for organizations. Fairyproof has developed industry security standards for designing and deploying
blockchain applications.

https://idex.io/
https://docs.idex.io/
https://www.fairyproof.com/

03. Introduction to IDEX 2.0

IDEX is the first Hybrid Liquidity DEX, combining a high-performance order book and matching engine with
Automated Market Making (AMM). The platform blends the best of centralized and decentralized
exchanges, with the performance and features of a traditional order book and the security and liquidity of
an AMM. IDEX allows traders to get the best spreads, avoid failed transactions, and easily provide liquidity,
all with the power of real limit and stop-loss orders.

04. Major functions of audited code

The audited code mainly implements the following functions:

Deposits of Crypto Assets

Users can deposit crypto assets to IDEX

Users can trade on IDEX with their deposited assets

Users can withdraw their deposited assets

Two ways to withdraw assets

Users can submit their withdrawal applications from offchain and sign their applications with
their private keys. After the admin receives an application for withdrawal from a user, he/she
will charge no more than 20% of the total amount as a transaction fee and send the
remaining amount to that user
Users can withdraw their assets onchain without being charged by the application

Order Book Exchange

Verifying a user's signature for submitting an order from offchain
The admin collects, matches and executes sell and buy orders
The admin sets the transaction fee of a transaction and the transaction fee cannot exceed 20% of
an order's total amount.

The Exchange's contracts can be upgraded

05. Admin rights

In this application the admin has the following previlleges:

Upgrading the Exchange's contracts
Collecting and executing users' submitted orders
Matching users' submitted orders

06. Key points in audit

During the audit Fairyproof mainly worked on the following items:

- Integer Overflow/Underflow
We checked all the code sections, which had arithmetic operations and might introduce integer overflow or
underflow if no safe libraries were used.

We found an issue. For more details please refer to "10. Issue descriptions".

- Access Control
We checked each of the functions that can modify a state, especially those functions that can only be
accessed by "owner".

We didn't find issues or risks in these functions or areas at the time of writing.

- Admin Rights
We checked whether or not the admin had inappropriate access rights.

We didn't find issues or risks in these functions or areas at the time of writing.

- State Update
We checked some key state variables which should only be set at initialization.

We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security
We checked whether or not the assets deposited in the contracts were safe and secure.

We didn't find issues or risks in these functions or areas at the time of writing.

- Offchain Signature Security
We checked whether or not the offchain signatures submitted for orders were safely and securely handled.

We didn't find issues or risks in these functions or areas at the time of writing.

07. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited to the
following ones:

Re-entrancy Attack
DDos Attack
Integer Overflow
Function Visibility
Logic Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Shadow Variable
Design Vulnerability
Token Issurance
Asset Security
Access Control

08. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at
some point in the future.

09. List of issues by severity

A. Critical

- N/A

B. High

- N/A

C. Medium

- N/A

D. Low

- Integer Overflow/Underflow: Low

10. Issue descriptions

- Integer Overflow/Underflow: Low
Source and Description:

In line 129 of AssetRegistry.sol , the loadAssetBySymbol() function has the following code section:

The gas consumption will exceed the gasLimit in the following two scenarios and may be vulnerable to
DOS attacks

An integer overflow occurs to i and the loop becomes infinite.

The index i in the for loop is an uint8 variable and its max value is 255. The upper limit of the loop
is determined by self.assetsBySymbol[symbol].length . if the upper limit is greater than 256, i will
overflow and be reset to 0 and the loop will never end, thus causing out of gas .

Before the for loop ends the gas consumption already exceeds the gasLimit thus causing out of
gas , and the corresponding trade to be stuck.

 assetsBySymbol holds different types of tokens who share the same name. If the number of types is
greater than 256 it will cause issues. Therefore we marked this risk with a low-severity.

Recommendation:

Consider validating the number of types that assetsBySymbol holds is less than 256 prior to adding a new
type of token whose name is the same as the tokens held in assetsBySymbol .

 function loadAssetBySymbol(...) internal view returns (Structs.Asset memory) {
 //...
 for (uint8 i = 0; i < self.assetsBySymbol[symbol].length; i++) {
 if (
 self.assetsBySymbol[symbol][i].confirmedTimestampInMs <= timestampInMs
) {
 asset = self.assetsBySymbol[symbol][i];
 }
 }
 }

11. Recommendations to enhance the overall
security

We list some recommendations in this section. They are not mandatory but will enhance the overall security
of the system if they are adopted.

- Defining Frequently Used Numbers As Constants
msInOneSecond is a constant number 1000 , which is used in both getOneDayFromNowInMs and
getCurrentTimestampInMs .

Consider defining it as a constant.

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to IDEX 2.0
	04. Major functions of audited code
	05. Admin rights
	06. Key points in audit
	- Integer Overflow/Underflow
	- Access Control
	- Admin Rights
	- State Update
	- Asset Security
	- Offchain Signature Security

	07. Coverage of issues
	08. Severity level reference
	09. List of issues by severity
	A. Critical
	- N/A

	B. High
	- N/A

	C. Medium
	- N/A

	D. Low
	- Integer Overflow/Underflow: Low

	10. Issue descriptions
	- Integer Overflow/Underflow: Low

	11. Recommendations to enhance the overall security
	- Defining Frequently Used Numbers As Constants

